Addendum
to the

Implementation Guide

Modula-2 System for Z80 CP/M
Addendum to Manual Release 10-19-1984
Page 1

Chapter 1. Contents

This addendum contains all desriptions of REALs and associated library modules, as
well as some other new library modules. The page headers of this document reflect
the chapters of the original manual to which the documents are associated.

The following parts are included:

Introduction to Modula-2:

- REAL Constants accepted by the Compiter

Implementation Guide:

- ReallnQOut Standard Library Modiuie
- MathLib Standard Library Module
- ConvertReal Utility Library Modute
- Files Utility Library Module

- CmdLin Utility Library Module

Advanced Programming Guide:

- REAL Format Description

Appendices:

- Bibliography

Implementation Guide
The Standard Library / ReallrQut
Page A-1G-2

Chapter 2. The Standard Library

Section 1. ReallnOut

1. General Description

The purpose of this module is to allow REAL number input and output. It is one of
the standard modules defined in Programming in Modula-2. The WriteRealiOct
procedure, which is hardly used by application programs, has been removed from this
module. More versatile REAL output formatting can be found in the ConvertReal
module. ReallnOut internally relies upon this module.

2. REAL Input

REAL numbers are accepted nearly free-form. The EBNF notation of the accepted
input tooks like:

ReadableReal = Sign Mantissa [('E'|'e') Sign Number].

Sign G

Mantissa = Number ['.' Number]| '.' Number.
Number = Digit ({Digit].

Digit = '0'|..|'9"..

Examples of correct REAL numbers:

t.0 0 0.0000000007 1E38 1.978e-9
+15.793e-5 20000.9

The following conditions have to be fulfilted by your input:

- The maximum REAL value is about 1.7e¢38 (less than 2127), the
smallest non-zero, positive REAL is about 3e-39 (2-128),

Implementation Guide
The Standard Library / ReallnOut
Page A-1G-3

- The chosen format allows for about 7 digits of precision because it
uses 24 binary mantissa digits internally. Numbers with more
significant digits will be truncated; the digits that aren't
representable are discarded (if they are behind the '.'") or used to
get the exponent.

- The maximum exponent of a number is 38. The minimum value that

leads to non-zero numbers is -39.

3. REAL Output

The output formatting is rather limited, because it uses always the scientific format.
The scientific format contains up to 7 mantissa digits. The minimum length of the
output is 6 characters ('0.E+0Q'). Setting the format-parameter 'n' to more than 12
resutts in leading blanks in the output.

4. The Interface

DEFINITION MODULE ReallnOut;

EXPORT QUALIFIED
ReadReal, WriteReal;

PROCEDURE ReadReal(VAR r: REAL);
PROCEDURE WriteReal(r: REAL; width: CARDINAL);

END RealinOut.

Implementation Guide
The Standard Library / ReallnQOut
Page A-1G-4

Section 2. MathLib

1. General Description

MathLib was originally postulated by Prof. Wirth in Programming in Modula-2 (page
85) as MathLib0. in an attempt to standardize a larger library, MODUS (Modula-2
Users Society) has created a draft standard that adds the 'power' function to the
original MathLibO and names it simply MathbLib.

Please keep in mind that REALs have a very finite precision. The calculations allow
for a theoretic maximum precision of about 7.2 decimal digits (24 binary mantissa
bits --> log10(224) = 7.2...). For numbers near the maximum representable REAL
number, the difference between two adjacent representable numbers is 2(127-24) _
2103 = 1031, So, there is no use to print results of any calculations with more than 7
significant digits -- you just -generate a '"better" precision than the computer does.

The algorithms used were chosen because their average performance is sufficient and
their execution times compare favorable to those of most competitors. None of the
catculations are iterative. If series are evaluated, only a fixed number of components
gets calcutated. These components are spelled out instead of iterated.

If you are mathematically inclined or in need of better precision, D.E. Knuth offers a
wealth of numerical algorithms in volume 2 of The Art of Computer Programming,
Seminumerical Algorithms.

2. Error Handling

Errors during the calculation of functions are fatal. The program is halted with an
appropriate message to the terminal using the 'Terminal' module. An exception hereto
are 'sin' and 'cos', which may cause an overflow if too big arguments are passed to
them.

Implementation Guide
The Standard Library / RealinOut
Page A-1G-5

3. Trigonometric Function Procedures

MathLib contains a set of trigonometric function procedures, namely the sine (sin),
the cosine (cos) and the arctangent (arctan). Out of this set, every other
trigonometric function can be calculated. In fact, even the cosine isn't necessary to
do so.

WARNING - Do not use arguments greater than 32767.0 for sine and cosine.
Due to the algorithm used for these procedures, an overflow could occur
otherwise.

-4, Exponential and Power Function Procedures

The set of exponential and power functions includes the natural logarithm (in) to the
base e = 2.7182818. Note that the precision of the calculations is limited as is the
range. The lar%est argument of 'exp' leading to a successful calculation is about 88
(less than In(2127)). The natural logarithm works on positive numbers greater than O
ontly.

The 'power' function allows to raise a REAL number 'x' to the REAL power 'y'.

The square root 'sqrt' works on positive arguments onty.

WARNING - 'exp' arguments may be up to 88, 'power' allows for x =
In(MAX(REALY)}) / In(y) , maximum, 'In' arguments must be greater
than 0 and 'sqrt' doesn't accept negative argument values.

Implementation Guide
The Standard Library / ReallnOut
Page A-1G-6

5. Conversion Function Procedures

The 'entier' and 'real' functions provide conversions between {NTEGERs
and REALs in both ways.

WARNING - 'entier' and 'real' work on the INTEGER range only. ‘entier'
returns the maximum or minimum INTEGER values for arguments that are
out of the integer bounds.

6. The Interface

DEFINITION MODULE MathLib;

EXPORT QUALIFIED
sqrt, exp, in, power,
sin, cos, arctan,
real, entier;

PROCEDURE sqrt{x : REAL): REAL;
PROCEDURE exp(x : REAL): REAL;
PROCEDURE In(x : REAL): REAL;
PROCEDURE power(x, y : REAL): REAL;
PROCEDURE sin{x : REAL): REAL;
PROCEDURE cos{x : REAL): REAL;
PROCEDURE arctan{x : REAL): REAL;
PROCEDURE real(i: INTEGER): REAL;
PROCEDURE entier(x : REAL): INTEGER;

END MathLib.

Implementation Guide
The Utility Library / ConvertReal
Page 1G-7

Section 3. ConvertReal

1. General Description

ConvertReal includes procedures that do conversions between STRING and REAL
data. This module is part of a standard library proposed by MODUS.

A real number consists of two major parts: The mantissa and the exponent. Both
can have a sign. The mantissa may be any floating point number, i.e. 1.8, -1567,04,
0.000002, etc. The exponent may be an integer number in the range -39 up to and
including 38. Note that numbers that are toc small to be different from zero, are
automatically set to zero. No error is indicated in this case. On the other hand, if
the upper limit of 2127 = 1.7.. 1038 s reached or surpassed in a calculation, a fatal
runtime error occurs.

2. StrToReal

The input procedure StrToReal converts an ASC!I string into the internal REAL
format. A legal REAL number has to comply to the syntax:

AcceptedReal = Sign Mantissa [('E'|'e') Sign Number].
Sign = ["+")'-'].

Mantissa = Number ['.' Number] | '.' Number.
Number = Digit (Digit}.

Digit ='0"|..]'9".

The maximum range of the REAL number format is +/- (5e-
39..1.7014118e38). The exponent -the number after 'E' or 'e'- is to the

decimal base. Thus, the REAL number is composed as mantissa *
j0exponent

NOTE - Differing from the compiler's real number syntax which allows it to
determine the type of a constant, the dot may be omitted in input to this
procedure,

Iimplementation Guide
The Utility Library / ConvertReal
Page 1G-8

Errors during a conversion are indicated by setting the BOOLEAN variable parameter
'success' to FALSE. Errors may occur because of numbers too big to be represented,
or if illegal characters are in the string holding the number.

3. RealToStr

This procedure converts a REAL 'r' to the string 's' producing 'width' digits or
blanks. The 'decPlaces' parameter serves different purposes: If 'decPlaces' is greater
than zero, the REAL is converted to a fixed-point representation having 'decPlaces'
decimal places (for example '1.50' for decPlaces = 2). If 'decPlaces' is zero, an
integer representation of the number without a '.'" (100000) is produced. !f it is
negative, the scientific notation {1.8E+10, etc.) is created. In any case, the string
contains leading blanks if the number is not exactly 'width' characters long. f the
scientific format has been chosen, at least 1 and at most 8 significant digits are
output for the mantissa. The value of 'width' determines the actual number of digits
according to the formula

digits = width - ExponentChars (4) - Dot (1) - sign (0 or 1).
'success' is set to FALSE if the conversion couldn't be accomplished due to too smal!

a fietd width. If 'width' is greater than the size of the string, an error gets flagged,
too.

The minimum field widths are:

Integer: 1
Decimal: 2 + decPtaces ("0." + decPlaces)
Scientific: 6 ("0.E+00")

For each representation, negative numbers require one more character.

NOTE - Due to the REAL number format, only about 7 digits are significant in
a number.

implementation Guide

The Utility Library / ConvertReal

4. The Interface

DEFINITION MODULE ConvertReal;

EXPORT QUALIFIED
RealToStr, StrToReal;

PROCEDURE RealToStr((* converts *) r

(* using *) width

(* and *) decPlaces

(* into *) VAR s

(* if *) VAR success
PROCEDURE StrToReal((* converts *) s

(* into *) VAR r

(* if *) VAR success

END ConvertReal.

Page 1G-9

: REAL;

: CARDINAL:
: INTEGER;
: STRING;

: BOOLEAN);

1 STRING:
: REAL;
: BOOLEAN);

Implementation Guide
The Utility Library / Files
Page A-1G-10

Section 4. Files
1. General Description

This is the third File System included with this Modula-2 System. It is capable of file
positioning at the byte and record-level and therefore provides some previously
unavailable features.

This file system uses internal buffers of tkByte in the current implementation. As
with most other modules, you can change this size to customize the system to your
needs.

Its advantage over most other random {/O impiementations lies in the fact that it is
abte to position a file at the byte fevel, ignoring CP/M's 128 byte sectors. The price
for this flexibility is an increased complexity and increased size, but it is very simple
to operate by the user.

It is also remarkable to say that you can read and write to a file without closing and
re-opening it. In fact, you can sequentially read a character, write the next, read
the third, etc.

NOTE - Upon each read action, a file's internal buffer gets flushed to disk, if it
has been written to since the last read operation.

Errors may be detected by watching the 'EOF' and 'FileStatus'-functions. A function
that gives literal (string) messages is also provided.

After the introduction of the variable types used in Files, each major operation on
files is explained in "shorthand notation", i.e. without attempting to do sufficient
error checking.

Implementation Guide
The Utility Library / Fiies
Page A-1G-11

2. File Names

File names are compatible with the 'FileNames' Module, i.e. they are internally
checked by the 'StringToFCBFile' procedure.

‘3. File Variables

The 'FILE' type is hidden from the user. To make a file acessible, you have either to
open or to create it using the 'Open' and 'Create' procedures. To end a file's
processing, you have to 'Close' it. If you want that the fite also gets deleted on the
disk, use the 'Release" procedure. This is especially useful for locally used files.

A normal CP/M 2.2 file may contain up to 65536 records (216). This results in 8
MBytes maximum file size. 'Files' is laid out to allow for this maximum number of
records. For large CP/M 3.0 files (up to 32 MBytes, and 218 records (262'144)),
'Files' does not work correctly. The record calculation procedure used by it,
however, calculates 24 bit quantities.

4. File Position Variables

'FilePos' variables contain ail the information necessary to position a file to a given
point. A position can either be calculated using 'CalcPos' or it can be retrieved by
calling 'GetPos' or 'GetEOF'.

The only way to position a file is given by the 'SetPos' procedure.

Users of Volition System's implementation may notice the absence of the 'SetECF'
procedure: Only CP/M 3.x does allow for file truncation. Since CP/M Plus isn't very
widespread yet, such a procedure has not been included in the normal form of this
module.

Implementation Guide
The Utility Library / Files
Page A-i1G-12

5. Reading From Files

Although 'Files' supports random access, a file is usually accessed sequentially. So, a
read session may look as follows:

VAR
f : FILE;
fileName, msg: STRING;
inputState : FileState;
ch : CHAR;
BEGIN

inputState := Open(f, fileName);
IF inputState = FileOK THEN

WHILE NOT EOF(f) DO
Read(f, ch);
END;

inputState := Close(f):

IF inputState # FileOK THEN
StatusMsg(inputState, msg);
WriteString(msg);

HALT;

END;

ELSE
StatusMsg(inputState, msg);
WriteString(msg);

END;

NOTE - Even when a file is only read from, a call to 'Close' is mandatory if
you want to reclaim the heap space used by the file descriptor.

Multibyte-records or arrays may be read using the 'ReadBytes' procedure.
You pass the address of your structure, and its size. 'ReadBytes' returns
the number of bytes that where actually read from the file.

implementation Guide
The Utility Library / Files
Page A-1G-13

6. Writing to Files

A typical write command sequence skeleton for sequential access is:

outputState := Create(f, fileName);
IF outputState = FileOK THEN

REPEAT
Write(f, ch);
UNTIL allWritten;

outputState := Close(f);

IF outputState # FileOK THEN
StatusMsg{outputState, msg);
WriteString(msg);

END;

ELSE
StatusMsg(outputState, msg);
WriteString(msg);

END:

Multibyte-records or arrays may be written using the 'WriteBytes'
procedure. You pass the address of your structure, and its size.
'WriteBytes' returns the number of bytes that where actually written to
the file.

7. Positioning Files

It is assumed that a file contains a given number of fixed size records. To access a
given record, you can calculate its position by using 'CaicPos'. 'CalcPos' uses the
record number and the record size which you provide, and calculates. thereof the
CP/M logical record number and the offset of the start of your logical record, in this
record. Having calculated this position, you position the file by using 'SetPos'. So,
the scheme tooks like:

CalcPos(recordNumber, SiZE{record), pos);
SetPos(f, pos);

implementation Guide
The Utility Library / Files
Page A-1G-14

If you want to append data to the end of a file, use the 'GetEOF' procedure instead
of 'CalcPos'.

NOTE - 'GetEOF' cannot account for your logical records. If your file doesn't
end at a CP/M sector end, you have to know where the exact end of file

is, either by a mark or by recalculating a record position.

NOTE - Setting the position of a file causes no immediate disk access. This
access is delayed until the next read or write operation occurs. This
means that positioning a file multiple times between read or write
operations doesn't cause your computer to "fiddie around" on the disks.

8. Renaming Files

The renaming operation works straight forward. You give the old and the new file
name as strings, and the rename operation is carried out. Success of operation can be

determined by watching Rename's return value.

IF Rename('XX.0LD', '"YY.NEW') # FileOK THEN
WriteString('Error in Renaming XX.0LD');

END:;

9. Deleting Files

You can delete files by using unambigous or ambigous file names. As renaming,
deletion is done by name, directly.

IF Delete('*.BAS') = FileOK THEN
WriteString{'All line numbers destroyed');

END;

Implementation Guide
The Utility Library / Files
Page A-1G-15

10. The Interface

DEFINITION MODULE Files;

FROM Strings IMPORT
STRING;

FROM SYSTEM IMPORT
ADDRESS;

EXPORT QUALIFIED
FILE, EOF, FileState, FileStatus, StatusMsg,
Open, Create, Close, Release,
Rename, Delete,
FilePos, SetPos, GetPos, GetEOF, CalcPos,
Read, Write, ReadBytes, WriteBytes;

TYPE
FILE;
FilePos;

FiteState = { FileOK,
UseError,
StatusError,
DeviceError,
EndError);

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

END Files.

Implementation Guide
The Utility Library / Files
Page A-1G-16

EOF(f: FILE): BOOLEAN;
FileStatus(f: FILE): FileState;
StatusMsg(status: FileState; VAR msg: STRING);

Open{VAR f: FILE; name: STRING): FileState;
Create(VAR f: FILE; name: STRING): FileState;

Close(VAR f: FILE): FileState;
Release(VAR f: FILE): FileState;

Delete(name: STRING): FileState;
Rename(currentName, newName: STRING): FileState;

GetPos(f: FILE; VAR pos: FilePos);
GetEOF({f: FILE; VAR pos: FilePos);

SetPos(f: FILE; pos: FilePos);
CalcPos(recNum, recSize: CARDINAL; VAR pos: FilePos);

Read(f: FILE; VAR ch: CHAR);
ReadBytes(f:FILE; buf: ADDRESS; nBytes: CARDINAL): CARDINAL;

Write(f: FILE; ch: CHAR);
WriteBytes(f:FILE; buf: ADDRESS; nBytes: CARDINAL): CARDINAL;

Implementation Guide
The Utility Library / CmdLin
Page A-1G-17

Section 5. CmdLin

1. General Description

The CmdLin module provides a procedure that reads the CP/M command line into a
string.

(f the commmand line isn't empty, it is checked for correctness. |f a space is entered
before the program's name, CP/M puts the program name into the command line, tco.
The default file control blocks, however, are set up correctly. Using this fact,
CmdLin finds the correct beginning of the command line. Simply, if you enter (your
input underlined)

A> copy alpha beta <CR>

or

A>copy alpha beta <CR>,

CmdLin will return ' alpha beta' as command line.

if the CP/M command line (stored at 80H .. OFFH) is empty, the ReadCommandLine
procedure displays a star prompt and awaits the user's input.

ReadCommandLine can be called multiple times. It returns the CP/M command line
but on the first call, if the command line isn't empty at that time. Afterwards, the
star prompt is displayed and user input awaited. This input is read with the aid of
Terminal.ReadlLn, so all the editing features possible there are also present in
CmdLin, including program abortion by ~C.

The command line returned by ReadCommandLine is guaranteed to be non-empty.

Implementation Guide
The Utility Library / CmdLin
Page A-1G-18

2. The Interface

DEFINITION MODULE CmdLin;

FROM Strings IMPORT
STRING;

EXPORT QUALIFIED
ReadCommandL ine;

PROCEDURE ReadCommandLine(VAR commandLine: STRING):

END CmdLin.

