R R R I N I

nnnon

X; X
XX t 11
A ttttttt aaaaa 1
X £ a 1
X X t aaaaaa 1
r S 7 t a a 1
X X ttttt aasaaa 111
BEEBEB ARA SSSSS 111 - CCCCC
B B A A S L T c
B B A A S 1 c
BEBJBE AAAAAAA SSSSS 1 [IEf
B B A A L
B B A A s I [
BBBBEE A A SSSSS 111 CCCCcC
ccecec 0oooo. M M PPPPPP II1 L EEEEEEE RRRRRR
co o nmtoomMoP L E R 3
o o nrnn P AR G T E R R
o © n M oM PPPPPP T EEEEE RRRRRR
a oan .- P) E R R
c o on n P 1 2 L, E R R
cccec 0ocoo n " .8 II1 LLLLLLL EEEEEEE R R

COMPILER PACKAGE FOR THE Xtal BASIC INTERPRETER
A Xtaltron (R) product

Copyright (C) 1883-87, A J Cornish BSc,
Crystal Electronics

CONTENTS
1. INTRODUCTION 2
I1. USING THE Xtal BASIC COMPILER 4
111. ERROR NMESSAGES 3

This manual Printed & Published by:
Crystal Research Ltd.
40 Magdalene Road,
Torquay, Devon TO1 4AF

Tel. (0B03) 27830
ISBN No. O SS06828 4 S

Crystal and Xtal are trademarks of Crystal Research Ltd.
Xtaltron (R) is a registered trademark of Crystal Research Ltd.

R N N O RN

* Xtal BASIC COMPILER VERSION 5.10 *

INTRODUCTION

This is a brief introduction to the Xtal BASIC compiler, which has been
designed to complement the now well-proven Xtal BASIC interpreter.
Continual improvement to Xtal BASIC has meant that the compiler has
tended to get pushed Ffurther and further back, to the point that we
almost Felt that it would never appear at all! Anyway, it is here now,
it works, and has been tried and tested with a wide variety of Xtal
BASIC softuare.

First, to explain the 'version’ number! This is the First version of
the compiler to be produced, but it is designed to support version 5 of
the Xtal BASIC interpreter. It is intended that the compiler will
parallel the future development of the interpreter, so that there will
in Future be a version of the compiler to support any new features or
improvements provided in future versions of the interpreter.

INTERPRETER OR COMPILER?

It is as well at this point to explain the difference betueen a
compiler and an interpreter, as this will serve to explain why we have
developed a compiler in the First place.

Hicroprocessors work in their own ’low-level' language, machine-code,
which is generally very primitive and long-winded for specifying tasks
to be performed by the computer. Therefore, although we can write our
programs in this machine-language (or in one directly related to it,
that is, assembly language), we generally prefer to use a 'high-level’
language, such as BASIC, FORTH, Pascal, FORTRAN, or one of many other
languages available.

In order to operate in a high-level language, we must employ the
services of a translator program, which will make our high-level
program into a Form understandable by the computer. Broadly speaking,
the translator program can fall into two categories -- interpreter or
compiler.

Both of these start with a source, or high-level, program. However, the
interpreter does a continuous translation of the program and executes
it while it does so. A compiler, on the other hand, translates the
program once, into another program, known as the object program. This
object program, generally now in machine-code, will then run as a
program in its own right, without the help of another program. Thus,
without the overhead of continuous translation while executing, a
compiled program will run very much Faster than an interpreted program.
However, the object program may end up being a lot larger than the
source program it replaces, depending upon how efficient the compiler
is, and large programs may take a long time to compile, as the
translation may be quite complicated (especially if the compiler uses
special methods to optimise size as well as speed).

There is a form of cumpiler that lies betueen the two, whic anslates
the source, not into an object program, but into an ‘intscmediate
program. This program then runs under a soecial ‘slimmed doun
interpreter, known as the run-time system. This system interprets the
intermediate program rather Faster than the usual interpreter would
with the source program, but is obviously not as efficient as having an
independent object program executing in machine-code. However, —the
intermediate program will be much more compact and, because of the
simpler translation, compiling is very quick and straightforward.

Uersion 5.10 of the Xtal BASIC Compiler is of this latter form, and
works in the following way:

1. The program XC.COM compiles a Xtal BASIC Source File (e.g, PROG.XBS)
into an intermediate file (PROG.XBI)

2. The program XR.COM is then used to run this intermediate Ffile.

Thus XC.COM is the compiler, and XR.COM is the intermediate interpreter
or run-time system. While not operating at anything like machine-code
speed, a run-time speed improvement of 1.5 to 5 times is possible, and
the speed improvement tends to be greatest in very large programs.

The compiler is compatible with the same version of Xtal BASIC that it
supports, and any program that runs under the interpreter should run
Under the compiler as well, with the Following notable exceptions!

1. Programs using POKE/DOKE/PEEK/DEEK to locations within the BASIC
interpreter itself. Clearly, these locations would not apply under the
tun-time system (note that PTR still works, where applicable). However,
PEEKs/POKEs etc to .OBJ Files or DOS/MOS scratch-pad locations should
work Fine.

2. The EVAL Function is NOT supported.

3. The following commands do not have any effect under the run-time
system (nor would it be sensible for them to do so!):

AUTO, DEL, LIST, MGE, NEW, REM, RENUM.

4. References to Files may cause problems in that the .XBS default will
now become .XBI the compiler. Beware of any data files with a
.XBS extension, which would now not be found, due to the Fact that the
system would be looking for a .XBI file!

5. Under release 1.0, the ‘semi-chain’ Ffacility allowed under the
interpreter will NOT work with the compiler, and the compiler will flag
as errors the presence of any HOLD commands within programs. However,
normal chaining between programs 1S allowed.

11. USING THE Xtal BASIC COMPILER

1. Creating a Program.

It is assumed that the user is already a registered user of Xtal BASIC
(you will only have been sold a copy of the compiler under that
assumption, or that you will have purchased both interpreter and
compiler at the same time!). Anyway, before a program can be compiled,
it must First be entered, edited (and preferably tested) under the
interpreter. Indeed, the normal development cycle for a program would
be to design and test it using the interpreter (very convenient Ffor
debugging), and then to submit it to the compiler to bring it uUp to
better efficiency. We do not describe the detail of editing/testing of
your source program here, but instead refer you tc the BASIC manual(s)
for a fuller description

By way of an alternative, a source File may be entered and edited using
a text editor or word processor program, in the form of a text (.ASC)
fFile. However, such a File must then be LOADed under the Xtal BASIC
interpreter and saved sgain as a Xtal BASIC Source (.XBS) file, before
being compiled. This is because the compiler only recognises the
compressed form of source file, and will not act on text alone.

2. Compiling a Program

Compiling a Xtal BASIC source file is gquite straightforward. The
compiler is XC.COM and let us suppose that the program to be compiled
is called HANGMAN.XBS, on the default drive, together with XC.COM.

XC HANGMAN will then compile it, saving the result as HANGHAN.XBI
on the same drive.

1€ it is desired to compile a program on a disc separate from the one
containing XC.COM, just specify the drive name(s) in the command, e.g,

0:XC 1:HANGIAN compiles the program HANGMAN.XBS on drive 1, where the
compiler is resident on drive O. The intermediate File HANGHMAN.XBI will
be created on drive 1. Note that the socurce and intermediate files must
both be on the same drive.

Alternatively, XC may be invoked without specifying a file, in which
case a '*’ prompt appears. The file to be compiled can then be typed in
or perhaps the disc can be swapped first, if the file(s) to be compiled
are on a different disc from the one containing XC.COM , e.g,

:XC

Xtal BASIC Compiler 5.10
*HANGHMAN

Pass 1 Pass 2 Pass 3
Compiled OK

.

In this case, the prompt reappears on completion of the command, and
either another command should then be typed, or else a warm boot can be
performed by pressing <ENTER>.

XC is a three-pass compiler, which means that it makes three passes
through the source file. However, the whole program is in memory at one
time, making the compiling process much Faster than it would be if the
program were continuously read from disc. This limits source program
size to about 40k, but this is no problem, since all source programs
will have been created under tha Xtal BASIC Interpreter anyway.

4.

All being well, each pass should be shown as it takes place, Ffollowed
by the message ’'Compiled OK'. The .XBI file is then written back to
disc, and control returns to DOS. Any error encountered is simply shown
as such, and the compilation terminates straightaway, without making a
.XBI file.

Pass 1 makes a list of line numbers used, marking the references within
the progeam, and flags any undefined lines as errors (i.e, places which
would have caused 'Branch Errors’ under the interpreter). It is
sometimes possible for this pass to show up errors which may not have
been noticed under the interpreter, since the routines containing the
offending line numbers could be redundant (i.e, never used!)

Pass 2 next removes all unnecessary spaces and REM statements, and
converts all numeric constants and variable names into tokens, to
speed up their evaluation under the run-time system.

Finally, pass 3 rechecks all line number references (for example in
GOTO/GOSUBS) and replaces them with relative jump offsets to their
actual destinations. The line number table can then be dropped, the
table of numeric constants is appended to the program, and the
intermediate program thus formed is saved back to disc.

Running Compiled Programs.

To run your compiled program, use the run-time system program XR.COM.
In the example From above, just do

XR HANGHAN and you will First be rewarded with the title display
for the run-time system, followed by the start of the program itself.

As For the compiler, it is possible to specify the drives separately
for the system and program, e.g,

2:XR 1:HANGHAN which loads XR.COM from drive 2 and then runs
HANGHAN.XBI From drive 1.

4. Compiling and Running a Suite of Programs.

The above is all very well when compiling a single program, but it is
sometimes necessary to modify this procedure for a suite of programs,
in particular when variables are shared between two or more programs.
In such a case, programs sharing variables must be compiled at the same
time in a single command, for example:

XC ACCOUNTS ACCT1 ACCT2 ACCT3 compiles the four programs
ACCOUNTS.XBS, ACCT1.XBS, etc., to form the programs ACCOUNTS.XBI,
ACCT1.XBI, ete.

Note that it is only necessary to do this where the programs call each
other by means of CHAIN commands -- if they invoke each other by means
of RUN commands, they may be compiled by separate commands. Moreover,
if you have too many Files to Fit on one command line, just invoke XC
by itself and type in one or more files at each '®’ prompt, until you
have compiled them all.

111. ERROR MESSAGES

compiling a program, there are several ways in which things may
"go wrong’, and any one of the Ffollowing errors may occur during
compilation. Most of these errors are due to limitations on how the
compiler uses tables to store constants line numbers and variables, but
we have not Found any problems with these limits so far, even with test
programs of well over 30k in length.

1. Compiler Errors.

Source Name Needed
This simply means that the compiler has been invoked without specifying
a valid source program.

No File
You have probably used the wrong name, or given the wrong drive for the
source program.

Constant Table Full
The source program cannot contain more than 256 different floating-
point constants. However, any number of integers in the range O to
65535 may be used.

Variable Table Full

The source program cannot contain more than 512 different simple
variable names.
Array Table Full
As for constants and simple variables, the source program cannot

contain more than 512 different array names.

Line Number Table Full
The maximum number of lines allowed in a single source program is 1024.

Disc Full
The intermediate File cannot be written back to disc, owing to lack of
space.

Directory Full
The intermediate File cannot be closed, because the
more space for directory entries.

directory has no

Memary Full

An Unlikely message, which will only happen if the source program is
too large For the compiler to handle, or if the program grows too large
during compilation. Again, this is very unlikely, since programs will
gererally get much smaller when compiled. The only way in which
programs could get larger would be if very large numbers of single-
character variable names are used (all variable names are compiled into
tuo-byte tokens).

*HOLD' not allowed

"EVAL’ not allowed

These two messages mean that the program Ffor compilation contains
either a HOLD command or EUAL function. As previously stated, these are
not supported under version 5.10 of the compiler.

Reference Error(s)

This occurs if a line number referred to by e.g, GOTO/GOSUE is
undefined. Pass 1 is used to make a list of line numbers and to mark
references, so a list of bad references is then displayed and the
message given.

Overflow Reference Error(s)
One or more line number references are larger than B65535.

Numeric Overflow

This occurs if a constant in the program is found to be too large, for
example, 1.7ES7. Note that the compiler converts all constants into
tokens, apart from the single digits 0-3, which stay in their ASCII
form. Floating-point constants are stored in a separate table appended
onto the program, and are all calculated at compile time.

2. Run-time System Errors.

The errors which can occur while running the intermediate program ace
basically the same as those which would have occurred if the source
program had been running under the interpreter. The only difference is
that, because all line numbers have been stripped from the intermediate
program, it is not possible to determine where the error has cccurred!
This makes it all the more important to test your programs under the
interpreter First, before submitting it to the compiler.

IMFROVEMENTS - IN XSM VERSION 1.0S FEERUARY 1987

The latest release of XSM, 1.05, overcomes a few bugs and makes some
improvements, too. These are as follows:

1. Expressions.
The */’ operator is now allowed in expressions, which performs a 16-bit
integer division, returning the integer part of the result (i.e,
chopped, not rounded). Freviously, only addition, subtraction or
multiplication were allowed.
Example: Suppose the symbol XYZ has been defined as 73A&H:

LD A, XYZ/256 ;_Puts high byte of symbol XYZ into A
The code generated would then be 3E 73.
2. Error Handling.
It was unfortunately very easy to ’fool’ earlier releases of XSM, which
tried too hard to make what it could of whatever was thrown at it! This
led to a lot of ’howlers’ being passed as correct code. The problem has

been pretty well cleared up now, and an extra error code, for
*Warning’ may be produced.

The ’W’ error indicates that the assembler has found code other than a
comment following what it thinks should be the end of an instruction.
In many cases, there is no problem and the correct machine code has
been generated (for instance, a common error is to type i’ instead of
3’ to start a comment). Inspection of the error line as thrown up on
the screen will then tell you whether editing and re-assembly is
required.

3. Conditional Assembly.

There were some problems with the handling of IF, ELSE and ENDIF
directives, which have now been cleared up. Additionally, the ’false’
code (i.e, the code which is NOT generated as a result of the IF test)
is not listed to the listing (or .FRN) file.

4. MCAL Routines.

An additional opcode has been defined for EINSTEIN owners, to
allow the direct assembly of MCAL routines. This takes the form

MCAL ROUTINE where ROUTINE is the routine number
required. For example, 9EH is the routine number to output a character
from the A register to the screen, so that the following:

LD A, TH
MCAL 9EW ; outputs ’

to the screen.
Previously, this would have been required:
LD A, TH?

RST 08H
DEFB GEH

S. Support of HITACHI 44180 Microprocessor.

Although this does not apply to EINSTEIN owners, many micro enthusiasts
are investigating this relatively new microprocessor, which is really a
’super 280’ contaihing many hardware enhancements. It also implements
some extra instructions, and XSM has been extended to allow them,
without affecting.the existing instructions supported. Obviously, on a
280, although the 64180 instructions will generate code, they are
undefined opcodes. as far as the 780 is concerned, and the results of
using them will be enually undefined!

Full details can be found in the Hitachi document entitled
’HD541B0 USER’S MANUAL® but, for completeness, here are the extra
opcodes:

T rp Multiply registers in register pair rp, placing 16-bit”
result back in rp. For example, MLT BC multiplies B by
C, placing the result back in EC. rp can be BC, DE, HL

or SP.

TST A Test register r by ANDing it with register A, without
affecting A. r can also be (HL) in this case.

TST n AND register A with number n (00-FF), again without
affecting A.

TSTIO n AND contents of 1/0 port addressed by C with number n,
again affecting only the flags.

NO r,(n) Input from port n to register r. In both this and the

OUTO instruction, the top B address lines are zero
during the 1/0 read/write.

ouTo (n),r Output register r to port n.

SLF Enter SLEEP (low power consumption) mode.

oTIm These are block output instructions, copying memory
oTDM addressed by (HL) to the 1/0 port addressed by C. For
OTIMR OTIM and OTIMR, HL and C are then incremented, whereas
OTDMR for OTDM and OTDMR, HL and C are decremented. In all——

cases, B is then decremented and, in the cases of OTIMR
and OTDMR, the sequence is repeated until B=

We hope that the above is of interest, even though it is of no use
except when using the 64180 CFU.

40 MAGDALENE ROAD
TORQUAY

DEVON

ENGLA!

CRYSTAL RESEARCH
L LTD kb

REG. IN ENGLAND No. 1629571
VAT Reg. No. 313 3398 79

Using WORDSTAR (WS.COM -- 71 blocks)

Some users have complained that the version of WORDSTAR released by
TATUNG on the EINSTEIN does not work under SYSTEM S. On inspection, it
was Found that some patches had been made which made direct reference
to DOS vectors, which was incorrect, as the vectors have moved. However,
the pointers to those vectors are Fixed, so that it is possible to make
WORDSTAR work with past and Future versions of Xtal DOS. In addition,
the patthes shown below remove or reduce scme unnecessary delays
inherent in the originnl WORDSTAR:

1. From DOS, do LOAD WS.COM

2. Enter MOS, and do 'M’ commands as detailed below. Note that, for each
alteration, we show the original value next to the address, in

brackets (3. 1F you should Find that the new value is slready present,
it means that the alteraticn has already been rade to your copuy (lucky
youl). So, For example, tupe MO234 and, if it contains 02, change this
to 01, Followed by 1D 00, do . ard press <ENTER>. If you do find neither
the old NOR the new value, check that you have the correct file in
mewzry, and then contact us! ¢

3. Finally, re-enter DOS, and do SAVE 71 US.COM .

no234 (02> 01 1D 00.

MOZ54 (00) 01 15.

NO2BE (0A) 00 00.

no2sF (03) 02 06 10 18.

M4618 (22) CD 1B C6 2A B4 C7. .

M4EB3 (C3) 2A B2 C7 11 12 C6 CD 30 C6 21 09 C6 18703
21 12 C6 ED SB 62 C7 01 08 00 ED BO CS.

H4BF3 (22) CD 29 C6.

n4y711 (21) 2A BY C7.

Directors: T. F. Brownen, G. M. Brownen, A. J. Comish, B.Sc.

Tel. (0803) 27890

40 MAGDALENE ROAD
TORQUAY

DEVON

ENGLAND

Tel. (0803) 27890

VAT Reg. No. 313 339 79

CRYSTAL RESEARCH
LTD. |

REG. IN ENGLAND No. 1629571

June 1387
Dear Customer,

Please Find enclosed updated copy of your SYSTENM S master disc,
complete with Xtal BASIC Compiler. We have updated ALL of the

Files on the master disc and would ask that you take a backup copy
straightaway, ard discard any previous versions which we have
supplied, as we can no longer guarantee them. This also applies to
the DOS system area, as the DOS has now been updated to version 2.05.

We have included Four BASIC programs for you to try with the
compiler, in their .XBS Form. These are as follows:

ERASTO.XBS ‘Sieve of Erastothenes’, a bench-mark program which
generates prime numbers. As supplied, it only prints out the
total number of primes generated, so to actually display the
primes (there are 1893 of them!), just remove the REM in front
of the PRINT P, statement.

FRUIT.XES Fruit-machine game. Just like the arcade one-armed
bandit version, except that there's no money to change hands!

A simple, non-graphic version of the HANGHMAN game, but

HANGIAN . XBS
it contains a fair library of words (some rather obscure!).

GRUFF . XBS Find your way through the maze, trying to escape from
the mad beast that wants his breakfast (i.e, you!).

We hope that you like the compiler -- if you do, please tell everyone
you can -- if you don't, please tell us!

Yours Faithfully,

Mr T F Brownen,
Managing Director,
Crystal . Research Ltd.

Directors: T. F. Brownen, G. M. Brownen, A. J. Comish, B.Sc.

T E269 E37F 12

E200
E212
E224
E236
E248
E25A
E26C
E27E
E294
EZ2AZ
EZB4
E2Cé
EZD8
E2EA
E2FC
E20E
E2240
E232
E244
E356
E268
E37A

1z

3 1A ES 18
00 00 @@ 09
a8 4@ @ 99
09 08 da 03
73 @9 E2 9d
06 08 08 00
a8 o0 9 od
0F @d @9 3A
CF D! CF 9B
@D CD A8 E2
D! E1 C? €D
5 ED U 0 D
ES F1 C3 DS
@@ C1 D1 B?
@E 16 CD E&
@1 CD E6 E2
1A 18 C3 CS
CR @1 38 @2
Ci €9 OE 1IF
CA OE 26 18
25 18 B&6 CD
a3 aa C9 adsé

C3 1A ES 12
od 00 00 80
43 00 83 09
od 00 o @9
73 #C E2 89

98 00 99 0%

%A
29
CF
@D
D1
11
ES
[2]%]
gE
@1
1A
CB
c1
CA
25
24

E4
29
D!
CD
El
11
F1
c1
16
ch
12
a1
ce
QE
18
(2]}

EB
28
CF
AB
ce
76
c3
D1
CD
=]
(oc
38
@E
26
B&
Co

E2
20
%E
E2
€D
E2
DS
B?
Eé
E2
@z
1F
18
cD
3é

ce
2E
2D
CcD
ES
ce
E2
FE
aE
FD
CD
Cé
S1
@@

25

g6

2c

13

@ odF
09 @9

99 07
@a @
CB 57
g od
ES DS
AF 32
E2 C@
13 {8
76 EZ
C? @E
27 C8
CD Eé
1B 7A
EZ2 23
@4 as
87 87
TR o

@S 3F

25 B8

gg 2d

Ce gE
37 Cc8
CD Eé
1B 7A
E2 22
@4 @5
87 87

ad
aa

26

B?

23
21
87

ae
og
ag
o8
15
[2]2]
a4

93
FS
E2

11
15

ce
FD
28

a1

a7

jo)al
oa
oa
a9

ae
ag
ad
SF
11
8A
78
18
DF
GE
21
@4
Dé
99
47

aa
o8
g
2a

f]o]
ad

S
15}
99

Dz
28

aA
ad
gE
76
E3

2
Fg
@E
12

1@
B8z
28

3A

5]7)

a3
@4

ad
F3
c?
a3
581

o6 00 0o 60 99

o0 98 098 99 99

84 og o9 60 dd

98 90 00 08 63 .

C7 @F 00 60 60 s.b.

0@ g0 00 60 06 .

dg @9 @9 08 o8 . Cid

43 3E 6@ D3 4% E{KW(.>.5H>'S

o @@ @g @@ 3E COQO.H>... st

CD 95 09 F1 C1 .M(b>.eUEu_..M

@E @F 18 39 YE GalM-d/2.b.vb.

6F 26 46 69 4C ..vbM>b@uM.cNo Fil

14 D5 CS CD @5 eqCUe.....vb..UEM.

76 E2 CD DD E2 .A@7I.vb...p.vbMIlb

CD Eé EZ C8 GE ..Mfb<{I..._..MfbH.

CA 11 80 0F GE .Mfb™.7H7I...J....

2B @6 @2 23 4E ..CE..Mfb} LEN

18 ED FD ES El K.8.3}£.23(..s.m}ea

1E FF @E 2@ 18 AI..MfbE£E™V.I... .

29 19 FD EB @WE J.&.FG.. (e alk,

@0 E6 @F EG 32 %.eMEc Lf.02

.50 3E €1 2n F4 57 ¢ £
WA, ov LY (Fyea), A Hv wm_)

6F
14
76
CD

CA
2B
18
1E
29
j5]5]

@&

CD g5
DD EZ
C8 @E
8@ OE
23 3E
ES ElL
2¢ 18
EE GE
B@ 32

C.e.H%.?.MOS. ...

6 s.b.b.%8J.e5%6. ...

.lckb
..ji.MOS

... W(.>.SH>'SI
OG0.H> .
.M(b>.eUEu_ .qA
GaIM-d/2.b.vb...7.

. .vbM™b@uM.cNo Fil
eqCle.....vb..UEM.
JAB7I.vb...p.vbMlb
B Fbd{I .MfbH.
.MEb™.FHZI S I
..CE..Mfb}!..+..£N
K.8.3£.2z3(..s.miea
Al. . MfDEE™V.I. .. .
Tk FGoatua)tk

%. 6MEC. . . f.82

“aTcs

