Super FORTH 112

LINSOft

FORUSE WITH EINSTEIN COLOUR MICRO COMPUTER

EYSURPRI | e LS OO

AL

Einstein SuperFORTH 1.12 for the Tatung Einstein

““mm“m“l‘ﬁh__“m“m“mmm_m_ Ll L] H“m“”mm_ﬂﬁ_“m““m“w“-ﬂ““—

CONTENTS

1

2

4

(c) 1984 Feter Amey

e Y SEAS] RO SSEES PEAGE SSped TEEST FRATE mEmes SEmes s Gk FESEs N FREEE SRR
—h——u—ﬂuﬁm““mumm—-“mlﬂnﬁhﬂ“m

INTRODUCTION

FORTH TUTORIAL

241

o B

dees B o

ORI S8 B o8 B % B 8 N

NS

2.10

DD

£ L BRI o

PR RPN OMMNRER
o~ B d k-

L0900 L-0

Introduction
The Forth Dictionary
The Interpreter
FORTH Word as Functions
The Farameter Stack
Stack Manipulation
Reverse Folish Notation
Defining Words
- Colon Definition
Constant
Variable

Advanced Defining Words
Frogram Structure

Do Loop

Boolean lL.ogic

If Else Endif
Begin Until

Begin While Repeat
Case Endcase

EINSTEIN FORTH MASTER DISC

P |
Dol
i

e

I

iod

« 6
4

p
L]

4

L]
mma

id Lod G L G G G G LA 0
oo ad
= = g OND>OA PR -

Acknowl edgements

Compliance with Standard fiqg.FORTH

Frogram Fortability
Character Set
Master Disc Contents
FORTH. COM
EDITOR40O.FIG
EDITORBO.FIG
FUNEEYS.FIG
GRAFHICS.FIG
SPRITES.FIG
SOUNDS.FIG
DOSTOOLS.FIG
UTILITY.FIG
GAME.FI1G6G
FLOAT.FIG

P
T

I |

e

Making a Working Copy of FORTH

Input Modes

NUMBER SYSTEMS
Integer Arithmetic
Number Bases

4.1
4.2

Actually Writing FORTH programs

12.4 Sounds
' FILE HANDL ING

12,3 Sprites
9. 1 Virtual Memory ; 12 & Utilities
9.2 Opening a File ! 12.6.1 Random Number Generator
o RN, File Extensions j ' 12 . 6.2 Machine Code Call
2.4 File Locking 12.6.3 Array Definitions
DD Disc Changing 12 . &. 48 Number Input and ADC Ports
J.6 Disc Range 12.6.5 Direct Keyboard Scanning
12.6.6 Internal Clock Handling Words
6 FORTH WORDS AND THEIR DESCRIPTIONS 12 & 7 Raud Rate and Serial Port Control
12.6.8 Double Number Extensions
7 VOCABULARIES 12.7 Dostools
12.7.1 Directory
8 ELIMINATING WORDS e My B Scratchpad
12.7.3 Delete File
9 ERROR HANDL ING
Ve L Error Vector
P 3 Other Error Handling Words

14 COMMOM FORTH ERRORS

10 EDITOR40 and EDITORSO {5 MODIFYING FORTH

11 A GLOSSARY OF FORTH WORDS 16 SAVING ENLARGED VERSIONS OF FORTH

11.1 File Accessing
11.4 Manipulating Screens 17 MEMORY MAF DIAGRAM
11.3 ARccessing Disc Blocks
Fha 8 SANGLE SENQEN S RIE 18 DICTIONARY ENTRY STRUCTURE
11.0 Double Length Arithmetic
11.6 Mixed Length Arithmetic 19 FURTHER SOURCES
: i F In;JthfDthpUt 191 Bibllugr—aphy
11.7:.1 Character Input/Output 19,72 FORTH Interest Group UK
 § P 0. Single Number Input/0Output
11.7.3 Double Number Formatted Output ~0 ERROR MESSAGE TABLE
11.7.4 Double Number Input and Unformatted Output
i1.8 Manipulating the Parameter Stack
11.9 Manipulating the Return Stack
11.10 Accessing the Memory
11.11 Bit Logic
11.12 Comparators
31.135 Frogram Structure
1i1.14 Words Allowing Access to the Dictionary
11.15 Words to Control Compilation
11.16 User Variables
% 0% 4 Constants
11.18 Operating System Words
12 GLOSSARY OF ADDITIONAL WORDS SUPPLIED AS SOURCE CODE
12.1 Floating Point Arithmetic
A0, g | Floating Point Defining Words
3 T Stack Manipulation and Memory Access
12.1.3 Floating Point Number Input and Output
12.1.4 Arithmetic and Comparators
12.1:9 Floating Point Constants
12.1.6 Trigs and Transcendentals
12.2 Function Key Programming
2L, S Graphics Extensions

e b,

- o — 5 m— 1
Xy -— —— Tl 11 E——

Einstein SuperFORTH 1.12 for the Tatung Einstein

e DI T TS ram ASoArR A e g R i el e el o T ap——p— iR Sy SheR R SRS SESLE S Akl Sy iy YSRGS

by Feter Amey

1 INTRODUCTION

——3—f——

SVl | FORTH is a powerful and unusual language which,
although fully interactive, is compiled and very fast. It s
ldeally suited for control, graphics and games tasks. The

popularity of FORTH, which is rapidly growing, has probably been
held back in the home computer market by its need, in a full
implementation, for a disc drive. In addition many of the
versions available provide only a basic core of the language and
provide little or no support for the special hardware features of
the machines on which they run. The arrival of the Einstein with
its integral disc drive and this version of Einstein SuperFORTH
overcomes both problems.

1.2 This manual provides a brief introduction to FORTH.
Although it is not intended to be a substitute for a qgood
introductory text book (see bibliography), it acts as a reference
manual for Einstein FORTH.

2 FORTH TUTORIAL

T i . e Shes Seete e e S e S S e o

2.1 INTRODUCTION. The principal difficulties with
learning FORTH, after using languages such as BASIC, are
conceptual. The language is both interpreted and compiled and
cannot be accurately defined as either high or low level. =
further difficulty for the beginner is that FORTH can be
intolerant of errors. Whereas the worst thing that can go wrong

with a BASIC program is the appearance of the dreaded words
"SYNTAX ERROR", FORTH is just as likely to respond by producing a
full system crash. If the initial struggle seems too much, carry
on! The rewards for learning FORTH are enormous: faster program
development, faster program execution and closer control of the

hardware than any language other than an assembler to name but a
few.

2.2 THE FORTH DICTIONARY. The FORTH language and FORTH
programs consist of a threaded nest of WORDS organised into a
dictionary. If you have not had the patience to read all this

before loading FORTH you can view all the words in the dictionary
by typing VLIST and pressing the Enter key. Each of these words
is the name of a self-contained routine capable of performing a
particular function and each is defined in terms of other more
primitive words in the dictionary. As an analogy consider the
real life "function’ MAKE-BREAKFAST. This could be defined using
more primitive functions as:-

LAY-TABLE MAKE-TEA BOIL-EGGS MAKE-TOAST

Similarly each of these functions can be defined in terms of even
more primitive ones. For example MAKE-TEA could be defined as:-—

FILL-KETTLE BOIL-KETTLE WARM-POT ADD-TEA ADD-WATER etc

Each of these can be further subdivided until all the actions are
being described in terms of very primitive functions indeed such
as OPEN-HAND, LIFT-ARM etc etc. This is exactly how FORTH works.
The primitive definitions are written in machine code and perform
essential functions such as printing a single character etc.
Other definitions are written in terms of these primitive words.
In this way most of FORTH is written 1in FORTH! User-written
FORTH programs are merely extensions of the core dictionary
until, in the threaded way outlined above, the whole program can
be described by a single FORTH word. Note that FORTH 1s very
permissive about the characters that it allows to be used as the
name of words and very generous about the length of such names.
Any characters with an ASCII code less than 128 decimal (no
graphics!) can be used in names and up to a (user alterable)
limit of 31 characters may make up a name. Thus we can write:

NUMBER_OF ALIENS instead of the more usual (in BASIC) NA

because FORTH programs are compiled this use of long names does
not have the side—-effect of gobbling vast guantities of memory as
it would in BASIC. The name is preserved only 1in 1ts own
definitiony all subsequent references to it compile down to a 2

byte address.

.. THE INTERPRETER. The FORTH inner interpreter 1is
responsible for taking, and making sense of, the stream of
characters it receives from the keyboard or from a disc file.
When it encounters a word, which it can isolate because each word
in the input stream is separated by a space, it first searches
the dictionary for it. If it finds it then the word is executed,
that is, the function described by that word is carried out. If
FORTH cannot find the word offered it attempts to convert 1ts
characters into a number using the current number base. If this
succeeds then the resulting number is placed on the parameter
stack (of which more later) and FORTH starts work on the next

word in the input stream. If number conversion fails then FORTH
rejects the word by printing it at the terminal followed by Pa
question mark. The phrase ‘using the current number base’” 1S

significant: FORTH can operate with virtually any number base
athough DECIMAL and HEX are the most common.

2.4 FORTH WORDS AS FUNCTIONS. FORTH words are anal agous
to BASIC subroutines or, more precisely, PASCAL procedures. Once
a particular word has been thoroughly tested (which FORTH s
interactive nature makes easy) its internal workings may be
forgotten and it may be considered as a ‘black-box’. The ‘black-—

box'y, or in computer jargon, ‘Function’ takes various arguments
or parameters in and may return one or more results. A function
6

i T T e o S e e R O PR e e e ol 1 e v o ot o el .

may also have some other effect such a drawing a picture on the
screen, moving a robot arm etc. Debugging a large FORTH program

1s relatively painless provided the lower level definitions that
make 1t up have been thoroughly tested.

2.9 THE PARAMETER STACK. If FORTH words are going to act
on input parameters and (optionally) return results then a method
of passing them is required. The mechanism that performs this
task is called the ‘'FParameter Stack-’. It is called a stack
because, conceptually, the values placed on it are stacked up one
on another so that the most accessible is always the most
recently added. A stack of plates is a useful analogy; only the
top plate, the most recently added, 18 accessible without
resorting to juggling. Adding a value to the top of the stack is
called ‘pushing’ the value. Removing the top value from the
stack 1is called ‘popping’ the value. Farameters are passed to
FORTH words by placing them on the stack then executing the word.
This pops the values from the stack, performs operations upon
them, then pushes any results back on to the stack where they are

available for access by other FORTH words. As well as providing
a means of passing parameters the stack is a useful temporary
store for values such as intermediate results. If you examine a

typical BASIC listing you will find that a large proportion of
the variables in it are only there as short—-term temporary homes
for values. These values would probably reside on the stack in

a FORTH program and would not need to be defined as specific
variables.

2.6 STACK MANIFULATION. Because of the importance of the
stack and the need to put parameters in the correct order for a
particular word FORTH provides a number of ways of manipulating
the stack contents. Full details of these will be found in the

Glossary of FORTH Words later in this manual. Examples of stack
manipulation words include:

DUP SWAP DROP ROT etc

Stack manipulation 1is an important FORTH art. The odd ROT or
SWAFP here and there can eliminate the need for specifically
declared variables and this can greatly speed program execution.

2.7 REVERSE POLISH NOTATION. As we have seen above FORTH
words expect to find their input values or parameters on the
stack. They then pop these values, process them and push any
results back on to the stack. This has an important consequence
which has a fundamental effect on the appearance of FORTH
programs; it forces the use of Reverse Polish, or Postfix,

Notation. Postfix Notation, which will be familiar to users of
Hewlett Packard calculators, specifies that an operator follows
1ts arguments. For example take the simple operator +. Using

infix, or algebraic, notation we would write:

o i . which would give the result 8.

Using postfix notation we would write:

i e i ek ol : e e i e .
¥
i
I-
i
e

a T, S with, of course, the same result.
In many ways this is more natural than infix notation. Consider
buying 2 papers 1n a newsagents. The mental process runs

something like this:

Daily Mail, that‘'s 18p, Guardian, that’'s 23p, so the total
is 41p.

We naturally use postfix notation. There are other advantages to
this approach as well, 1in particular, it is never necessary to
use brackets to define the order of calculation. For example the
following infix expressions:

Lo, e 8,9
can be expressed in postfix notation without brackets as:
o e (. N or more simply 2 3 + 9 #
The more complexs:
(.2:%.3.3.% L. A4 .+ 5)
can be similarly expressed:
e o9 Fr 8 0 + 8

Don't be put off by postfix notation. Despite 1t being the most
publicised consequence of using FORTH it is not a real barrier to

learning 1t.

4 DEFINING WORDS. We have learnt that FORTH consists
of a dictionary of words which can be combined together to form
new words and, ultimately, complete applications programs. =
will now look at the method of defining new words and adding them
to the dictionary. This 1is achieved by the use of Defining
Words. These are FORTH words whose functional effect is to
compile a new word and add it to the dictionary.

L8, 1 COLON DEFINITION. The most common and
important defining word is the colon (:). When FORTH encounters
a colon 1n the i1input stream 1t creates a new dictionary entry
named after the word following the colon. It then compiles all

the following words 1nto the new dictionary entry until a
semicolon (3) is encountered. The semicolon ends the defining
process. fThis is much clearer with an examples:

= BREAKFAST LAY-TABLE MAKE-TEA BOIL-EGGS MAKE-TOAST j;

The most important thing to remember when making new colon
definitions 1is that all the words refered to must already be
defined. The example above would fail if, for example, MAKE-TEA
had not yet been defined.

\ 2.8.2 CONSTANT. CONSTANT is a defining word used to
give a name to a constant numerical value. There are 3
advantages to using named constant for important numbers:

4 It is faster than using a literal number.

b It makes programs much more readable and
easier to understand.

C It makes programs much easier to modify.

CONSTANT expects a number on the stack and should be followed by

the name that 1is going to be used to refer to that value in
future. This name is added to the dictionary. Subsequent use of
this new word will push its value on to the stack. For example:

40 CONSTANT SCREEN-WIDTH defines a new constant.
SCREEN-WIDTH puts 40 on the stack.
2.8.3 VARIABLE. Whereas CONSTANT gives a name to a

number which will not change during execution of a program
VARIABLE defines a storage location where a changing value may be
temporarily stored. It is used in the following form:-

n VARIABLE name

This defines a new dictionary entry ‘name’ which is used to refer
to a memory location where a 16 bit integer value can be stored.
The contents of that address are initialised to the value n.
Subsequent use of ‘name’ leaves the address of the storage
location on the stack. Values can then be read from or written
to 1t using other FORTH words such as ' @ and ?. The function of
each of these and other memory accessing words are described in
the glossary. For now it is sufficient to remember that VARIABLE
gives a name to a box in which numbers may be placed.

2.8.4 ADVANCED DEFINING WORDS. The majority of
programming tasks for which FORTH is suitable could be tackled
with just the defining words described above, however the power
of FORTH is greatly enhanced by the more powerful defining words
1t possesses. It is beyond the scope of this manual to go into
detail about these more advanced features but users should be
aware that they exist. Included are words for defining new FORTH
words in assembler mnemonics or directly in machine code and,
most powerfully of all, words for defining new defining words.
This powerful and conceptually difficult concept makes FORTH
infinitely extensible and makes it possible to create application
specific compilers using it. The most common way of defining a
new defining word is to use the <BUILDS DOES> construction. This
i1s explained in the Glossary. Examples of this method can be
found in some of the source code supplied on the FORTH master
disc, for example the ARRAY definitions in the file UTILITY.FIG.

Examples of assembly and machine language definitions will also
be found 1i1n the supplied FORTH source files, especially

GRAFHICS.FIG.

P FROGRAM STRUCTURE. Now that we know how to define
new words we can start to write FORTH programs, however we are
limited to writing routines with no branches, decisions or loops.
This severe limitation is overcome by FORTH's powerful program
structuring features. Some of these have analagous BASIC
constructs but most have equivalents only in highly structured
languages such as FPascal.

2+9¢1 DO LOOF. The FORTH DO LOOP is similar
in function to the BASIC FOR NEXT loop. It permits the
repetitive execution of a word or number of words a set number of
times. DO LOOF is the appropriate structure to use when the
number of iterations is known in advance. A DO LOOF example:

10 O DO words to be executed LOOP

DO expects 2 numbers on the stack; top of stack is the start
value of the loop counter and below this i1is the end value. FORTH
executes the words between DO and LOOFP and each time LOOFP 1s
reached it increments the loop counter by 1, 1Tt the counter 1s
equal or greater than the end value then the loop terminates
otherwise it is repeated. A DO LOOP 1s always executed at least
once. Within a DO LOOFP the value of the loop counter can be
placed on the stack by the word 1. For example:

10 O DO I . LOOP

prints the numbers O to 9. (. 1is the FORTH word to print the
number on the top of the stack.) If we wish the loop counter to
change by a value other than 1 on each pass through the loop we
can use the word +L0O0FP instead of LOOP. +L0O0F expects a number
on the stack which it uses to increment the loop counter. Thus:

100 DO I & 0@ »LODP

prints the even numbers between 0 and 9. Finally, 1if FORTH
encounters the word LEAVE in a loop it sets the loop counter
equal to the exit value so as to ensure that the loop 1is
terminated next time LOOF (or +L00FP) is reached. This allows a
controlled exit from a DO LOOFP before 1ts normal completion.
Incidently this is often done in BASIC programs with a GOTO to a
point outside the FOR NEXT loop. This practice is insecure and
dangerous; the FORTH method 1s much to be preferred. Along with
all the FORTH programming structures DO and LOOF may only be used
within colon definitions - direct execution of them 1is not
possible.

LoDl BOOLEAN LOGIC. Before we can consider the
remaining FORTH program structures we must consider how FORTH
handles Boolean or true/false logic. FORTH handles decisions by
using flags to represent logically true and 1logically false

10

values. These flags are merely numbers; false is represented by
the wvalue ©O and true by any non—zero value. This convention
allows a 1logical AND to be evaluated by multiplying two flags

together and a logical OR to be evaluated by adding two flags
together. The FORTH comparators (=,< etc) leave logical flags on

the stack and the programming structures examine the flags and
make decisions based on them.

L9953 IF 'ELSE ENDIF. This structure 1s the basic
decision making device in FORTH. IF examines the top of stack
and if the value there is true the words between IF and ELSE are
executed. If it 1is FALSE then the words between ELSE and ENDIF
are executed. In either case program flow resumes after ENDIF.
The ELSE part of this structure is optional. I¥f 1t 1s not
present and the top of stack i1is false when tested by IF then no
action occurs at all and execution resumes after ENDIF. For

various historical reasons THEN can be used as an alias for
ENDIF.

2.9.4 BEGIN UNTIL. This construction is used when a
number of words are to be repetitively executed until some
condition 1is true. It 1s the appropriate structure when the
number of iterations is unknown but must execute at least once.
When UNTIL is reached the top of stack is tested. If it 1s true
then execution continues with the words after UNTIL. If 1t is
false then execution restarts after BEGIN. Care must be taken
that the top of stack becomes true at some point in the loop or
else 1t will be infinite. A common FORTH use of this structure
calls 7?TERMINAL (which return true if any key is pressed) just
before UNTIL. This allows a loop to continue indefinitely until
interrupted by the user.

Lo T BEGIN WHILE REPEAT. This is similar to BEGIN
UNTIL except that the test is made before the loop and it is
therefore possible that the loop will never be executed at all.
WHILE tests the top of stack, if it 1is true then the words
between WHILE and REFEAT are executed. If i1t 1is false then
execution skips to bevond REFEAT. When REFEAT 1s reached
execution returns to BEGIN, the test i1is repeated at WHILE and so
On.

2496 CASE ENDCASE. The CASE construct allows a
multi way switch to be written. It is generally clearer and
simpler than writing the same switch using a nest of IF ELSE
ENDIFs. CASE is not found i1n most implementations of fig-FORTH
but 1s included in Einstein FORTH. AN explanation of the
construction 1is in the bGlossary and there are many examples 1in
the accompanying files on the FORTH master disc, 1in particular
the editors.

2.10 ACTUALLY WRITING FORTH FPROGRAMS. We now have all the
tools necessary to write FORTH programs. Words, perhaps
involving the wvarious loop and decision making constructions
described, are combined until the entire application is described
by a single word. Typing this word at the keyboard will cause

11

FORTH's inner interpreter to execute the program. Incurable
BASIC programmers can even define this word as RUN! Definitions
may be entered directly from the keyboard, in which case they are
compiled and added to the dictionary as soon as Enter is pressed,
or written to a disc file using the editor for later loading.
The latter method 1is the more usual since directly entered
definitions cannot be conveniently altered i1f they prove to be
incorrect. Direct entry of definitions can, however, be
convenient for setting up quick test routines or programming

tools. When we use the editor to write source code 1t i1is first
written to a disc file. These definitions can be called up and
edited at will. Once the source code is written the entire

program can be compiled into the FORTH dictionary by use of the
word LOAD. This takes selected parts of the file and presents
them to the FORTH inner interpreter exactly as 1f they had been
directly typed in from the keyboard. If the definitions prove to
be 1incorrect they can be recalled, edited, the o0ld version
forgotten (see FORGET in Glossary) and the new vesion reloaded.
There are no restrictions on the layout of FORTH source code
except that each word must be separated by one or more spaces.
Even when entering definitions directly they may occupy any
number of lines, the definition is finished only when the
semicolon 1s reached. Comments (which are deliminated by
brackets) may be freely used and, because FORTH compiles its
source codey, oOccupy no space in the dictionary. Use of the
editor allows top—down programming to be practiced since 1t 1is
possible to assume the existence of any desired word then go to
an earlier screen and actually define it.

3 EINSTEIN FORTH 1.12 MASTER DISC

R G ey et cepli: S Sl iy el SpRge yEpumy Grese SEp gy y——

3.1 ACKNOWLEDGEMENTS. This implementation of fig—FORTH

is based on the 8080 assembly language listings distributed 1in
the public domain courtesy of the :-

FORTH Interest Group
FO Box 1105

San Carlos
CA 24070

The Tatung Einstein implementation was by Feter Amey and this,
the machine—~dependent portions of the code and the modifications
are copyright ((1983,1984). Unauthorised distribution of Einstein
fig-FORTH 1s expressly forbidden.

Sel COMPLIANCE WITH STANDARD fig-FORTH. This

implementation provides all the features of standard fig-FORTH,
as defined in the FIGC implementation manual. In addition, this

version incorporates a full screen editor (for both 40 and 80
column Einsteins), a FORTH 8080 assembler and a number of
extensions to the basic fig-FORTH model. The principal change to
the fig model 1is the manner in which disc access 1s handled.
Traditional fig-FORTH uses the disc purely as pseudo ram without

12

any file structure. This implementation wuses random access
Tatung/Xtal DOS files. This achieves the same purpose but enables
FORTH source code to exist on a disc with other files and
logically separate applications to be kept in separate files.
Once a file has been accessed and opened by FORTH interaction
with it is indistinguishable from traditional fig-FORTH. A number
of file handling utilities and words are included in the
implementation. FORTH purists who object to this file oriented
approach can open a file (perhaps called SCREENS?) at the
beginning of each session and thereafter ignore the fact that
files are in use — all the usual virtual-memory techniques can be
used. This is not recommended, however, since sensible use of
files has great benefits to the user.

B, e, PROGRAM FPORTABILITY. FORTH program portability 1is
generally better than that of BASIC programs. Despite the many
extra features supported by Einstein FORTH, care has been taken
that the basic core of the language conforms to a recognisable
standard. In the hobby market there are 3 main FORTH dialects:
fig-FORTH, MVP-FORTH and FORTH79 (which 1s gradually being
replaced by the updated FORTH83). The first 2 are very similar
and should pose few portability problems. FORTH79 looks very
similar but uses a number of words in a sightly different way
which can be very confusing. The main aid to portability is the
natural extensibility of the language. If you are trying to
convert someone else’'s program to run on the Einstein and it uses
a word that Einstein FORTH does not contain then the missing word
can simply be defined and added to the dictionary. Of course, to
succeed, the source program must have been adequately documented.
Einstein programs will be substantially portable to other
machines providing machine-specific features (sound, colour etc)
are not involved. As an aid to those wishing to write portable
code non-standard words and extensions to Einstein FORTH are
indicated with an asterisk in the Glossary.

3.4 CHARACTER SET. FORTH makes use of square brackets
which are not present in the normal Einstein character set. To
provide them FORTH alters the character set on start up and
provides square brackets as ASCII codes 71 % 93. Square brackets
can be accessed with the left and right arrows keys (1/4 and 3/4
keys) . Other characters may be redefined using the FORTH word
SHAPE (see Glossary).

3.5 MASTER DISC CONTENTS. The distribution disc contains a
number of files and these are described below. Many of the files
are FORTH source code for extensions to the basic language core.
These extensions could have been incorporated into the language
core but there are considerable advantages in supplying them as
extensions for optional loading. These are as follows:

a Only relevant extensions need to be loaded. This
keeps the langquage size down. There is no need to 1oad
the Sprite handling words if you are writing a data
base for example.

13

b The extension files serve as a demonstration of

FORTH programming, especially systems level work and
the use of the assembler.

C Skilled users may alter and extend the extension
files to suit their own applications.

The files supplied are:

Sl FORTH. COM This file contains the core of the
FORTH language itself. As a .COM file it can be run directly

from the Xtal DOS level. A FORTH source code file may be typed
on the command line thus:

FORTH GAME

This will call wup the FORTH compiler/interpreter and open
GAME.FIG as the current file.

SLSL2 EDITOR4O.FIG This file contains source code
for a full screen editor for standard 40 column Einstein
machines. It must be loaded (compiled) before any source code
can be written to disc files. It may be useful to save an
enl arged vesion of FORTH including the editor and other

extensions. Instructions for doing this will be found later in
the manual.

Sa e EDITORBO.FIG This file serves the same

purpose as EDITOR40.FIG but is intended to be used with the
Einstein 80 column display card.

S..4 FUNEKEYS.FIG Contains source code for routines
to program the 16 Einstein function keys. Key definitions can be
entered from the keyboard or loaded from disc files.

ko, Wk . TR GRAPHICS.FIG Contains source for all the
Einstein graphics features except Sprites. RAll the features
familiar to users of Tatung/Xtal BASIC 4 are supported.

SeD. b SPRITES.FIG Contains source code to enable
the creation and control of Sprite characters.

Dids 7 SOUNDS.FIG The words supplied in this file
allow control of Programmable Sound Generator (PSG) chip in a
user—friendly manner. Further details of the functioning of this

chip are to be found in pages 288-310 of the Einstein BASIC
Reference Manual.

S« 3.8 DOSTOOLS.FIG Contains words allowing display
of the disc directory, deletion of files and the transfer of
source code from one file to another.

Sews 9 UTILITY.FIG This file contains a miscellany
of useful definitions including a random number generator, arrays
and strings. Each screen of this file can be loaded separately

14

B T TR

as required.

Dasde 10 GAME.FIG This file contains source code for
a simple arcade—-type game and is intended as an_exam?le of F???H
programmilng making use of many of the Einstein specific
extensions available in this version of FORTH. Users may wish to
extend this game as a learning exercilse.

Sdell FLOAT.FIG This file contains a flaaFing
point arithmetic and trignometric function péckage. Th? f1r§t
part of the file (screens 1 to 12) contains the arlthmet%c
routines and the latter part (screens 14 to 19) the trig

functions.

3.6 MAKING A WORKING COFPY OF FORTH. Before experiment?ng
with FORTH it is vital that you make a backup copy of the disc
supplied. Do not even contemplate running FORTH from your magte:
discy should it become corrupted or physically damaged 1t can?ad
be replaced. The disc is not copy protected and may be copie

using BACKUP.COM as supplied on your system master disc. ﬂ?ce
this task has been carried out you are ready to start using
FORTH. A useful first step is to make and save an enlarged

version of FORTH incorporating some extensions useful fgr program
development. Useful additions to the FORTH care_fnr tﬁ1§ purpose
are the DOSTOOLS and the EDITOR. The procedure is defined below.
Your entries from the keyboard are underlined and tﬁe Enter k?y
should be pressed after these commands are typed_ in. FDRTHHS
responses are not underlined and cnmgen?a expla1n%ng @hat ;s
going on are in brackets. Start by bringing your Einstein up to
the DOS level and then, in answer to the 0O: prompt, proceed as

foll ows:

FORTH DOSTOOLS (run:. FOKRTH, make DOSTOOLS.FIG current
i file)

Z80A Einstein FORTH 1.12 (system sign on message)

(c) 1984 P Amey

1 LOAD 2 LOAD 3 LOAD (load 1st 3 screens of file)

Loading Blocks: 1 2 3 4 5 6 7 (directory rnutipe)
Loading Blocks: 2 10 11 12 13 14 15 (ﬁcratchpgd rnutlﬁe}
Loading Blocks: 17 18 19 ok (delete file routine)
NEWFILE EDITOR40 (change file to editor)

ok

1 LOAD (load entire editor - screens are

linked)
Loading Blocks: 1 2 3 etc

(define dummy word to act as a bmundafyp between the
FORTH dictionary and any later additions you may

make)

: TASK 3

15

g ﬁum.mludu.nﬁ-m“:ﬁmﬂ-J..J--.-l-.-l-_-'.-l.v-._-.'-..-.-i-.-i.-.ut.d S IR T i i

TASK Isn‘t Unique ok (there is already a TASK in' the B 5 FILE HANDLING

AR gema S s Semiwmn uEredd SRS AR SRS e oo oBiad SEAE

dictionary - this does not matter in | i
this case but FORTH warns you just in

case) | | 8 | VIRTUAL MEMORY. FORTH can be run without having a
SAVE (FORTH ‘Mord 48 : _ disc file open. Definitions can be entered_in qirecF mode fr?m
SO A3 B O r saving enlarged versions) | the keybnard_ gnq subegquently run. Operating in this way 1S
, & extremely limiting since the editor cannot be used and
Os . f definitions cannot be written to or loaded from disc. To make
1 . this possible a file must be opened. This file provides a name

under which disc access will be controlled by Tatung/Xtal DOS.

FORTH tells you how big the new version is - in 256 byte blocks - Once a file has been opened, Einstein FORTH uses it as virtual

inde.regzsng yvou to Xtal DOS. All that is now necessary is to Memory, divided into 128 byte sections called ‘Blocks’. The
ype: SAVE 62 BIGFORTH.COM. (Any suitable name can be used.) block is the fundamental unit for accessing the disc. It is these
disc blocks that are accessed by the FORTH words BLOCK and

The DOS will then save the enlarged FORTH to disc. From now on

you can use BIGFORTH instead of FORTH and the Editor
g d
will be ready for immediate use. e 8 A B

BUFFER. To allow editing of source code held on disc 8 of these
blocks are treated as a single unit called a ’Screen’. Screens
contain 16 lines of text each 64 characters long and are accessed

' 3.7 INPUT HUPEE- Einstein FORTH can accept command from by the editor and by the words LIST, TRIAD etc defined below.
z Feybnard in either of two modes. On start up the default

:E w 1S SCreen 1“PUF- _Thls allows commands to be picked up off R OPENING A FILE. A disc file is specified in one of
e screen. Nothing is read-in by FORTH until the Enter key is four ways:

pres§ed, before that the cursor can be moved to any line at will

The input to FORTH consists of the 40 character line on which th;
cursor rests when the Enter key is pressed. Alternatively a line
1nput mode can be selected with the FORTH word LINE-MODE. This
al!nﬁs up to 80 characters to be input at a time but the only
editing permitted is to use the DEL key and retype. The full-
screen-editing mode can be re-selected with the word SCREEN-MODE

When in line mode the printer can be coupled to the screen wit;
control R and uncoupled with control S. In screen mode all the

control codes described i : i
oy ed 1n the E1nﬁt91n reference card may be

=) By typing the name on the command line after FORTH.

b By using the FORTH word NEWFILE (see glossary).
C By using the FORTH word GETFILE (see glossary).

d By using the FORTH word FILEVAR to create a file
variable. (eg. FILEVAR FRED.TXT) When the file
variable is typed at the keyboard or encountered 1i1n a

program it becomes the current file. (eg. typing FRED. TXT
closes the current file and sets the current file to

4 NUMBER SYSTEMS FRED.TXT)

Files can be switched at will since use of GETFILE, NEWFILE or a

inclugél rnué?:iSEanfRII?MEIFC- $tandarg fig—FDRTH does not EE file variable will always close the old file befnre_npening the

double-1enath inteides llna ing point arithmetic, but since H new. ﬁFtemptﬁ to access screens without having a file open will

formatting faCilit?eg ailiow ?lraﬁge of +/T ?xloa and full output : result in an error message. The warning message "New File" will

integer L th - iR oo able to position ‘decimal points”, . be displayed if a specified file cannot be found in the disc

nteger arithmetic is more than adequate for almost every directory.

gltuat1on_ Normal or single-length numbers are 16 bits long.

a???iﬁ;ifzgt? number?dare 32 bitstlnng. _Cude_fur floating point 5:3 FILE EXTENSIONS. FORTH file? have the qefau?t
S provided on the distribution disc for those who extension .FIG . This will be inserted if an extension 1S

omitted. The filename can have an optional drive specified. If

really cannot manage without it.
omitted the default drive will be used. The default drive can be

base 4;2 NUM?ER a: fig-FORTH can operate in any number changed with the FORTH word DRIVE (see glossary).
v rom 2 (binary) to 36. The words HEX and DECIMAL select

'va?§: ?:N:EF bases, but any other base can be used by storing its o.4 FILE LOCKING. As with Tatung/Xtal BASIC 4 and
e current base in the user variable BASE. Eqg. Tatung/Xtal DOS, files can be locked, or marked as read only, by
2 BASE the user. This provides some protection against accidently
; destroying a disc file. The word LOCK will mark the current file
selects binary as read only; UNLOCK will remove the protection. Locked files
) are indicated with an asterisk when their name is displayed with

loaded as normal and can be called up by the editor. The locking

16 17

b.2 SYMBOLS USED IN THE EXPLANATIONS. The descriptions of
shows 1tself when an attempt is made to write to the file usually FORTH words which follow will use the following symbols:
by the use of FLUSH, NEWFILE, GETFILE or DOS. Each of

these
words tries to write the contents of any updated disc buffers to addr memory address
, d1isc which will not be permitted if the destination file is b 8-bit byte
locked. There are two ways to escape when this error occurs: if i 7-bit ASCII character
you wish to actually carry out the write to disc then type UNLOCK d 32-bit signed double integer.
then repeat the commands that caused the error; 1if you wish to ; Most significant byte (sign) on top of stack.
abort the write then type EMPTY-BUFFERS. ud 32-bit unsigned double integer.
§ Boolean flag. O=false. 1=true.

D. D DISC CHANGING. To ensure that files are correctly ey Boolean false flag.
closed always FLUSH before changing discs and always use DOS (not tf Boolean true flag.
the reset button) to return to Tatung/Xtal Dos. After a disc o 16-bit single—-length signed integer.
change use LOGON to log on (') the new disc. This will initialise o i6-bit unsigned integer.
the error handling system. It is possible to corrupt disc TOS Top of stack.
contents if these precautions are not taken. It is especially » Extensions to basic fig-FORTH.

important to use FLUSH before changing discs if anything has been
written to the file in use prior to the change. This is because
FORTH holds information in RAM buffers before w-riting it to disc.
If the buffers are full, the disc is changed, and FORTH then

attempts to write the buffers contents to disc then corruption
will result.

7 VOCABULARIES

. T S A S S S e S— — . —

Al v Abe-EORTH. aieve Loaring LoglEI ol e
- ; ion contains »

2.6 DISC RANGE. The 1lowest screen or block number vncaau:z:izz- Ezzi :ﬁ;i;ﬁlary will be described separately, b?t
available is 1. Attempts to access screen O or negative screens ?::a.; P n;tant to note that the same word can be employed 1n
generates an error message. High screen numbers should be used ;achl vocagulary without causing problems to FORTH. Whether or
with caution since their use will rapidly fill up the disc and "ot it confuses the user is another question! Message 4 (name
wasted space cannot be used by other files. For most purposes it

not unique) will be displayed as a warning even if the duplicate

1s best to start a program at screen 1 of a file and work upwards definition is in a different vocabulary to the original.

as needed.

f il At any time when running FORTH, there areRRE:$
vocabularies to consider: the CONTEXT vutabulafy gnd the CU e
6 e i S ol s vocabulary. The CONTEXT vocabulary is where dictionary searches

will start, whilst the CURRENT vocabulary is that to which newly-—

. defined words will be added. A new vocabulary is created by
6.1 The FORTH language is built up of ‘FORTH words'. Each

word is built up from other, more fundamental, words which have

: : ; VOCABULARY name
already been defined either by the fig-FORTH release or by the '

programmer. Because FORTH words operate by manipulating a stack fﬁ and made into the current vocabulary by
using Reverse Polish Notation, the standard descriptive system !
for them is as follows: y g
(stack before ——— stack after) e current and” Cantait VBEabul aries are both wet to - Thame® ' by
where '——-" signifies the execution of the word in question. The name DEFINITIONS
contents of the stack are listed as deep as necessary, separated
by a space and with top-of-stack on the right.
R a8 ELIMINATING WORDS
As an example, the word + (plus) would be described as: NI NI S i W 5 v 28
VIR UL T ==y) 8.1 FORGET. The word FORGET will eliminéte §11 words
back to and including the specified word, starting with those
to indicate that two 16-bit values are placed on the stack and words most recently defined. Only the current vocabulary li
that both are removed from the stack during execution of ‘plus”’, ffected and it is wvital that the context and curren
which puts the total back on to the stack. "

19
18

vocabularies are the same before FORGETting. The system will
respond with a suitably rude message if you forget!'! A typical
use would bes:

FORGET MYWORD

8.2 Difficulties may be experienced when FORGET is used in
a part of the dictionary containing many interleaved
vocabularies. This fault is inherant in the design of fig—-FORTH
and 1is common to all implementations of it. In practice it does
not usually cause any problems.

8.3 FENCE. User variable FENCE contains an address below

which FORGET 1is inhibited. The sequence HERE FENCE :
protects all the words thus far defined. The sequence)
ANYWORD FENCE ! moves the protection to another point in the

dictionary.

9 ERROR HANDL ING

e O MESSAGES.FIG Error messages are contained in the
file MESSAGES.FIG which can be user extended. On cold starting
the system or using LOGON the system looks for MESSAGES.FIG on
drive O. If it is found then user variable WARNING is set to 1
and all error messages will be in text form. If the messages file
1s not present then WARNING is set to O and numeric errors are
used. The selection of text or numeric errors is automatic as
long as LOGON is used after a disc change. WARNING can be zeroed

manually if it is desired to switch of text errors for any
reason.

e A9 ERROR VECTOR. As an enhancement to the error
handling system a vectored jump system has been introduced. This
enables a user written error handling routine to be substituted
for the inbuilt one. The user error routine is called when
WARNING is set to —-1. The vector is set up by

" NAME ERRVECT

where NAME is the word to be called on error. This routine must

clear the stack with SP! and, if not a closed loop, end with
QUIT.
Example:

: MYERROR ." ERROR NUMBER " . SP'!' QUIT 3
-1 WARNING °
* MYERROR ERRVECT

This will result in the message ERROR NUMBER n being displayed
instead of the FORTH error messages. The standard error system
can be restored by storing 1 or O in WARNING. The default setting
in ERRVECT is ABORT. This maintains compatability with the fig
standard. Tampering with the error handling routines is best left

until the basic concepts of the language are mastered.

20

?.3

with error handling are:

PCOMP

2C5P

?DEFPTH

?ERROR

7EXEC

LOADING

PAIRS

P?STACK

ABORT

FILE?

10 EDITOR40 AND EDITORS8O

i — T - RN Y s s Sl oSl G SRS WSS Si— p— —

G, . AR SRR twEm e b e G GRS SRS PSS S L e

10.1

any of

normally

testing

useful

Screens can be selected for editing with:

the full-screen editing commands are used. It is not
necessary to explicitly use the vocabulary word EDITOR.
Any legitimate exit from the editor automatically reselects the
FORTH vocabulary. The editor is used to write source code to disc
screens for later LOADing. Note that definitions can be entered
direct from the keyboard without the editor and in this case they
are compiled as soon as Enter is pressed. This is useful for
short words or for writing quick, once-only utilities.
Where longer definitions are being written it is better to use
the editor and save the source code before testing. Before the
EDITOR can be used the source code for it must be LOADed. It 1s
to keep 2 versions of FORTH one of which has the editor

(and other utilities) permanently installed.

OTHER ERROR HANDLING WORDS. Other words associated

If not compiling, 1ssue error message.

If stack pointer does not equal the value 1in
CSP, issue error message.

My R

Issue error message if stack depth less than
n.

RIEV gy =)

Issue error message n and QUIT 1f f 1s true.
Else carry on.

Error message if not executing.
Error message if not compiling.

(Nl "NE sy
Error message if nld{>nZ. Used to check

compiled conditionals.

Issue error message of stack out of bounds.
Only checked when control returned to the
terminal, so no range check during execution.

Clear stacks and return control to terminal
with sign on message.

% { e 1)
Issues error 10 if no filename is present 1n
the FCB.

The Editor vocabulary is invoked automatically when

27

EDIT

SELECT

Selects the most recently accessed screen (or

screen 1 if a newly opened or flushed file)
for editing.

* <y
Select screen n for editing.

When using the editor the keys works as follows:

Cursor keys

CTRL-"

CTRL-L

INS

DEL

ESC

These function as expected. If you cursor off
the top or the bottom of a screen the previous
or following screen is displayed. The current
cursor column is continuously displayed at the
top of the screen. In 40 column versions two

screen lines are used to display the standard
FORTH 64 character lines.

Move the cursor to the top left of the current
sCreen.

Clear the current line from the cursor to the
end of the 1line.

Switch from overwrite to insert mode. A
caption will be displayed at the top of the
screen to indicate this.

Delete the character to the 1left of the

cursor. It is not possible to delete beyond
the beginning of a line.

If in insert mode then switch to overwrite

mode. If 1in overwrite mode then exit from the
editor back to FORTH.

Other keys are displayed and written to the file.

Additional

control codes:

editing features can be accessed with the following
(Note that PAD is a scratchpad area used as a

temporary store for text strings).

CTRL-X

CTRL-E

CTRL-I

CTRL-P

Create an eXtra blank line at the cursor line.
Line 15 of the screen is lost.

Erase the current line and close the gap by
moving following lines up; this leaves line 15
blank. The deleted text is written to PAD.

Insert the text at PAD at the cursor line.

Following 1lines are pushed down, 15 being
lost.

Put contents of PAD on to current cursor line

22

CTRL-C

CTRL-T

CTRL-F

CTRL-A

WHERE

CLEAR

COPY

.) - = iy Tl Ak S T = TR e e e T O o o L e T Wil Il Wi e B
T S . e e T e e e e e e e R

replacing the current line.

Copy the current cursor line to PAD but
otherwise leave it alone.

Type the current contents of the PAD at the
bottom of the screen

(Find) Prompt for a search string and search
for it beyond the cursor. If found the cursor
is placed over it. If not found then a Bell
sounds and the cursor is placed at the Home
position. The search string 1is placed at PAD
before the search takes place.

' Search Again using the search string already

at FAD.

If an error occurs when compiling, the word
WHERE will list the offending screen with the
cursor immediately after the word causing the
error and invoke the editor. The stack
contents must not be altered between the error

occurring and WHERE being used.

O o Bl 0
Erase the contents of screen n of the current

file.

(. 02:nk e 3
Copy the contents of screen n2 to screen nl

overwriting its contents. Note that this
follows the usual Forth convention of source

coming before destination.

23

11 A GLOSSARY OF FORTH WORDS

T S i W . S " S—
et e ———————

MESSAGE

GETFILE

NEWF ILE

LOGON

DOS

-FILE

- DEF

FILEVAR

T —— —— . ———— i — S W W —

FILE ACCESSING

&0 Mg)
Returns true flag if current file is locked.

G
Write all updated blocks to the current disc

file then close and reopen the file. FLUSH has
no effect if no file is open.

(o mreeesl)

Output 1line n of MESSAGES.FIG. No output is
generated if Jine n does not exist. MSGfn is
output if MESSAGES.FIG is not on drive 0 or
user variable WARNING contains O.

N

Allow the input of a file name from the

console and open it. The current file is
closed first.

*(———)

As above except that no prompt is issued and
the next word in the input stream is accepted
as the filename. eg: NEWFILE A:FRED. NEWFILE
should only be used from the keyboard, not
within programs.

®(———)

Initialise the disc system and attempt to open
MESSAGES.FIG on drive O. Clears file
descriptor block for the current file. Should
always be used after a disc change.

®¥(———)

FLUSH, close files and exit to Tatung/Xtal
Dos. This is the equivalent of BYE or MON on
most fig-FORTH systems.

*(———)
Print the current filename.

¥ ———)
Print the current default drive number.

*#(—m—)

Used in the form FILEVAR name. Creates a word
‘name” that when executed closes the current
file and opens a new file (or reopens an old
file) called ‘name’. This is most useful
within programs where you might want to be
able to switch between 2 or more files under

24

DRIVE

11.2

INDEX

LIST

LOAD

- LINE

TRIAD

11.3

BLOCK

BUFFER

program control.

*{ n —m—)
Make drive n the default drive.

%L - i)

Alter boot-up parameters to reflect current
dictionary size. Print dictionary size in 206
byte blocks then exit to DOS. This allows the
memory image of the enlarged FORTH system to

be saved to disc as a .COM file.

MANIPULATING SCREENS (NB. A file must be open)

£INE VN eekabl Y
Displays the first line of screens nl to nZ.

These lines should normally be comments.

A Wl
List the screen n.

£ Py mient
Load and compile the text on screen n. The

block numbers being loaded will be displayed
during the loading process.

(line screen ——-)
Print on the terminal the specified line from

the screen. Trailing blanks are suppressed.

{ ~)
Continue LOADing the next screen.

("' it)
List 3 consecutive screens, starting with

screen n. This is a useful word for creating
program listings since 3 screens fit nicely on
i1 page. A footer taken from line 15 of
MESSAGES.FIG is displayed at the bottom of

each page.

S e B
Terminate loading of a disc screen.

ACCESSING THE DISC BLOCKS (NB. A file must be open)

{ n —— addr)
Check that block n is in RAM. If not, read it

from disc. Leave its buffer address on TO0S.

{ n — addr)

Obtain the next memory buffer, assigning it to
Block n. If the buffer is marked as updated 1t
is written to disc. The block is not read from

25

the disc. The address left is the first cell
within the buffer available for data storage.

EMPTY-BUFFERS il i)

UPDATE

11.4

Mark all buffers as empty without writing them
out to disk. Override all UPDATE flags.

s Hr—4e)
Mark the most recently accessed block as
updated so that FORTH will automatically write

it out to disk if the buffer is re—used or
FLUSH 1s executed.

on 16 bit integers.

/MOD

ABS

MAX

MIN

MINUS

SINGLE LENGTH ARITHMETIC. These words all operate
(nl n2 ——— product)
Leave the signed product of 2 signed single—

length numbers.

(inl N2 —— sum)
Leave the sum of nl and n2.

(nl n2 —— n3)
Apply the sign of n2 to nl and leave as n3.

(nl N2 —— diff)
Leave the difference of nl n2.

(Nl N2 ——— quot)
Leave the signed quotient of ni/nZ.

(nl N2 —— rem quot)
Leave the remainder and quotient of nl/nZ.

{n —/—— n+1)
Increment TOS by one.

(N~ nedd
Increment TOS by two.

in ~—— u)
Convert signed
unsigned integer.

integer to absolute value as
(nl N2 —— max)
Leave the greater of nl and nZ.

(nl N2 —— min)
Leave the smaller of nl and nZ.

{inl ~——— nNn22)
Leave the two’'s complement of nl as n?Z.

(nl N2 — mod)

26

11.95

Leave the remainder of n1/n2 with the sign of
nl.

DOUBLE LENGTH ARITHMETIC. These words operate on 32

bit integers each of which takes up 2 stack locations.

D+

DMINUS

S—>0

11.6

* /MOD

M/

M/MOD

u/s

(di d2 —— dsum)

Leave the double length sum of 2 double—length
numbers.

gl —= g’

Leave the two’'s complement of dl as dZ.

N . .—— d)’

Convert a signed single—-length number to a

signed double—-length number.

MIXED LENGTH ARITHMETIC.

(ni nZ n3 —— n4)
Leave the answer nd4=ni1*n2/n3 with double-—
length intermediate results for greater

accuracy than % and / alone would give.

{(nl N2 N3 ——= N4 nJ)
Leave the quotient nS and the remainder nd to

the operation nl*¥n2/n3, again with a double—
length intermediate result.

(dl "~ agd

Apply the sign of n to dl to leave dZ.

(Nl N2 ~== a7

Leave the double-length signed product of nl
and nZ.

{(d nl.——— nd nS)

Leave the single—-length remainder n2 and
single-length quotient n3 from the calculation

d/nl.

(udl u2 —— uld uds)

Leave the unsigned remainder u2 and unsigned
double—-length quotient ud?2 from the
calculation udl/u2.

(uli u2 —— ud3)

Leave ud3 as the unsigned product of ul and
ul.

{ udli ul —— u22 ul)} _
Leave the unsigned remainder u2 and unsigned
quotient u3 from the unsigned double dividend

ud and unsigned divisor ul.

27

11.7
. CPU

—TRAILING

?TERMINAL

ASCII

BCOL

CLS

COUNT

CNTRL

CR

11.7.1

INPUT/0UTPUT

CHARACTER INFPUT/0UTPUT

§ ey
Frint the computer/CPU name as set up by the
implementer.

(addr nl —— addr n2)
Adjust the length nl of character string starting

at addr to length n2 so as to exclude trailing
blanks.

{ omupua)
Output a literal string terminated by a "
eg. -" cccc" prints the string cccc

(——)

Without waiting for a keypress leave a tf if a
key 1s pressed or a ff if no key is pressed.

i § Moy

Compile the ASCII code of the next character
in the input stream into the dictionary as a
literal if compiling or put it on to the stack

if not compiling. Use of this word is intended
to make source code listings more readable.
0. . KEY ASLII P = IF .eccesscsas
instead of

O M R F

i 5 ol
Set the backdrop colour to colour n.

R —T
Leave the ASCII code for a space.

* (———)

Clear the screen and, if operating, send a
form feed to the printer.

(addrl —— addr2 n)

Examine the character string starting at addri
which has its length stored in its first byte.
Leave the start of the string itself as addr?2

and 1its length as n. COUNT is often followed
by TYPE.

o i)

Leave the control code equivalent of a

character in the same way that ASCII 1leaves
1ts ascii code.

R peine
Transmit a carriage return and linefeed to the

EMIT

EXPECT

GETKY

KEY

L INE-MODE

ol

FAD

FPON

POFF

QUERY

selected output device and zero user variable
ouT.

{ b =)
Transmit 8 bit ASCII character b to the

selected output device and i1increment user
variable OUT.

(addr count —)
Transfer characters from the terminal to a

buffer starting at addr until a carriage
return is sent or count characters have been
input. One or more nulls are added to the end

of the string.

*¥{(—— c) if key down

(—— 0) 1f all keys up

Return ASCII of any key pressed, or zero 1if
all keys up, without waiting.

§ i
Wait for a keypress and put i1ts ASCII code on

the stack.

B Y
Set input mode to line input.

(b 'portt’ e}
Output byte b to port.

(portf —— b)
Input byte b from port.

(——— addr)
Put the address of the text output buffer on

TOS. PAD is a fixed offset from HERE. PAD 1s a
useful short term scratchpad for string
handling.

3§ St

Couple the 1line printer device to the console
output. This can be done by ™R from the keyboard
but this word allows the printer to be controlled

from within programs.

L, o)
Turn printer off.

§)

Transfer characters into the terminal 1nput
buffer (TIB) until either a CR is met or 80
characters have been sent. Zero IN, which is a
pointer relative to TIB. When in screen mode
the 1input to TIB the 40 characters read from

29

SCREEN-MODE

oSHAPE

SPACE

SPACES

TCOL

TYPE

WORD

XCR

11. 7.2

the screen line where the cursor was before CR
was pressed.

g e Y
Set input mode to full-screen input.

*¥(b8 b7 b6 bS b4 b3 b2 bl b ——)

Create a new shape for character b using the 8
bit patterns bl — b8. b1 is the top line of
the character pixel grid.

oo)
Transmit an ASCII space to the current output
device.

in -——)

Transmit n spaces to the current
device.

output

*{ for bak —m—)
Set text colours to for and bak.

(addr count ——)

Type count characters from addr to the current
output device.

L.

Scan the input stream for the delimiter c,
ignoring leading occurrences. Transfer the
string to the dictionary buffer HERE, put its
length in the first byte and add two blanks to
the end. 1f user variable BLK 1s 0O, then the
input is from TIB with IN as a pointer. If BLK
is non—zero then the appropriate disc memory
buffer is used as the input stream.

% (opomem)

Send a CR & LF to the currént*nutput stream
without zeroing user variable 0OUT.

SINGLE NUMBER INPUT/0UTPUT

- An ———)

Output the single number n to the current

output device after conversion the the current

base and follow i1t with a space.

WLl weases)
Output the single number n to the current

output device using base 10 without altering
the value of BASE.

{nl n2 ——)

Print nl1 right-aligned in a field of width nZ.
There is no trailing blank.

30

DECIMAL

HEX

11.7.5

{ ———)
Set the current base to 10 decimal.

(——)
Make 16 decimal the new base.

L. =l
Output the unsigned integer u according to the

current base.

DOUBLE NUMBER FORMATTED OUTPUT. Several FORTH

words are concerned with converting double numbers into formatted
character strings suitable for output by TYPE. These are =

<£

£5

HOLD

SIGN

£ >

Start converting a double number already on
the stack.

Produce one digit per ¢f. If conversion 1S
already complete, output a leading zero.

Convert the rest of the number without any
leading zeroes.

S)

HOLD is only valid between <f£ and £> and puts
character c¢ into the output string at the
point indicated by HOLD in the format mask.

N g ==} .
Put a 1leading minus sign on the converted

number if n is negative. n is discarded.

{ d — addr count)
Terminate numeric conversion by dropping d and
leaving the address of the character

representation of the number and its length 1n
a form suitable for TYPE.

It is important to note that conversion is right to left (or back
to front) compared with the mask. For example in base hex:

<f£ £ £ 2E HOLD £5 £>

will produce a character string of the converted number with
right of the decimal place and without leading

digits to the
Zeroes.

11.7.4

two

DOUBLE NUMBER INPUT AND UNFORMATTED OUTPUT

g)
Print the double number d using the current

base with a trailing blank.

{fd N ——)

31

Frint the double number d right-aligned in a
field of n without a trailing space.

NUMBER (addr —— d)

Convert a character string at addr, with its
length in the first byte, to a double number
on the stack using the current base. Put the
position of any decimal point in user variable
DPFL. If conversion is invalid, issue an error
message.

11.8 MANIPULATING THE PARAMETER STACK. The parameter

stack 1is the mechanism by which values are passed to and from

FORTH words. An

understanding of the manipulation of the

parameter stack is fundamental to mastering FORTH.

—-DUP

DEPTH

DROP

OVER

SWAP

ZDROP

2DUP

N e imy) 1f ni=0

(nieiigy M) i1 N< 20

Duplicate the T0S only if non—zero. Most
useful with IF to avoid the need for ELSE DROP
1f the result is false.

L G 8 1
Return the current depth of (number of values

on) the parameter stack. Execution of this

word will, of course, increase this depth by
1.

4 Wl
Discard the single number on TOS.

R =y N)
Duplicate the single number on TOS.

(nl n2 —— nl1 n2 ni1)
Copy the second single number to TOS.

(nl N2 N3 — N2 n3 nl)

Rotate the top 3 numbers on the stack ending
with n3 on TOS.

(=)
Clear the stack by initialising the stack
pointer.

(——— addr)

Flace the current address of the stack pointer
on T0S.

(nl Nn2 —— n2 nl)
Swap the top 2 single numbers on the stack.

{nl N2 —)

Drop the double number (or 2 single numbers)

from T0OS.
(nl N2 —— ni1 n2 nl1 n2)

Duplicate the double number (or 2 single
numbers) on TOS.

32

25WAP *(dl d2 —— di d2)
Swap the 2 double numbers on TO0S5.
PICK *¥(n —— N)

Copy the n’'th number in the stack to TOS.
There is no check that the stack actually

reaches the depth requested.

-5 (=)
Print the contents of the stack (tos on the

right) without affecting it. If the stack 1s
empty the word Empty is printed.

STON STOFF i § o)
Turn on or off a continuous display of the
stack contents. This stack display 15
extremely useful when learning FORTH or

debugging FORTH words.

11.9% MANIPULATING THE RETURN STACK. The return stack 1s
mainly used by FORTH itself to keep track of the execution path
and for loop counters, return addresses etc. It may be used as a
temporary store by the programmer as long as anything placed
there is removed before the end of the word or loop which put it

there.

R (n ———)
Transfer the top single number from the

parameter stack onto the top of the return
stack. Balanced by R>.

I R 5 0
Copy the current value of the loop counter to

TOS within a DO LOOP.

R {(~—~ 1}
Copy the top value on the return stack to top

of the parameter stack.

R> (e imn)
Take the top of the return stack and put it on

top of the parameter stack. Balances ’R.

RF! £ =)
Initialise the return stack. Mainly for use
by FORTH.

RiP@ (—— addr)

Place the current address of the return stack
pointer on TOS.

11.10 ACCESSING THE MEMORY

. (n addr —)
Store single number n at addr. Can be used

with a variable as 1n 1 WARNING !
+! {n addr —)

33

21

2@

BLANKS

!

ce

CMOVE

<CMOVE

ERASE

FILL

MOS

VPEEK

VFPOKE

11.11

AND

e b g, e e B N R R

Add n to the value at addr.

(addr ——}

Frint the value at addr in free format to the
current base.

{addr —— n)
Fut the value in addr on TOS.

{d addr ———)

32 bit equivalent of !

{addr ——— d)
32 bit equivalent of @

(addr count -——)
Fill memory from addr with count blanks.

(b addr ——)}
Store byte b at addr.

{addr —— b}
Fetch byte b from addr.

{(from to count ———)

Block move memory segment of count bytes. The
move 1s towards high memory.

¥(from to count -——)
As CMOVE but move is towards low memory.

(addr count -——)
Fi1ll memory from addr with count null bytes.

(addr count b —)
Write count bytes b from addr.

®(———)

Return to MOS. FORTH can be warm—started with
Y or cold—started with X.

¥(addr —— b)}
Return byte b from addr in the video RAM bank.

¥(b addr ——— }
Store byte b at addr in the video RAM bank.

BIT LOGIC

{nl nZ2 —— n3)
Leave the bitwise AND of nl and n2 as n3.

(nl N2 — nNn3)

lLeave the bitwise OR of nl and n?2 as n3.

34

TOGGLE

XOR

11.12

O<

U<

11.13

IF ELSE THEN

BEGIN UNTIL

BEGIN AGAIN

BEGIN WHILE REPEAT Test TOS at WHILE.

(addr b ———)
Toggle the contents of addr with bit pattern

b.

(nl N2 —— n3)
L eave the bitwise XOR of nl and n2 as n3.

COMPARATORS
i el
Leave true flag if n 1less than Zero,

else leave a false flag.

(ny: =i’ 1)
Leave true flag if n equal to zero, else leave

false flaq.

(Rl N =)
If ni<n? leave true flag, else false flag.

s e i
If ni=n2 leave true flag, else false flag.

(Nl n2Z = 99 |
If ni>n?2 leave true flag, else false flag.

(ul a2 =+ %9
Compare two unsigned numbers.

memory addresses.

Useful for

PROGRAM STRUCTURE

(f —)
I¥f f is true execute code between IF and ELSE

and continue after THEN. If f is false,
execute code between ELSE and THEN before
continuing after THEN. The ELSE part 1s
optional. IFs can be nested to any depth
{(FORTH can cope even 1if the programmer
cannot!). ENDIF may be used instead of THEN

if desired.

Repeatedly execute code between BEGIN and
UNTIL until TOS contains a true flag, when
execution resumes after the UNTIL. END may be
used instead of UNTIL.

Execute an endless loop between BEGIN and
AGAIN. There are tricks to eacape from this?
sort of loop and BREAK may be placed in it to
allow escape with SHIFT-BREAK.

If true, execute code
between WHILE and REPEAT and resume execution

35

BREAK

DO LOOP

DO +LO0OP

LEAVE

CASE

11.14

n

at BEGIN. If false, skip to after REPEAT.

*(———)

Has no effect on the program but forces a

keyboard scan so that SHIFT-BREAK can be
detected and acted on. It 1s wuseful as a
debugging aid in large and potentially

infinite loops.

{inZ ni —)

Execute code between DO and LOOP and increment
nl. Repeat the loop until ni=n2, when flow
resumes after LOOP. Note that nZ2>nl1 and that

the last value of n2 during execution of the
loop will be n2-1.

(n2 nil
As for DO LOOP except that the number on TOS

)

when +LO0OF is executed is added to the 1loop
counter. This is like FOR NEXT STEP in BASIC.
Within a DO LOOP structure, LEAVE sets the
loop counter to the exit value so that the
loop terminates next time LOOP is encountered.
% ——)

The CASE construct enables a value on the
stack to be tested and a multi-way branch to

be determined from the result. Anything that
can be achieved using it could equally well be
done with a nest of IF....THENs but the result
will be much easier to understand, modify and

debug using case. The basic layout of a CASE
construction is:

CASE

nl =0F words to be executed if n=nl1 ENDOF
nd <0F words to be executed if nd<nZ ENDOF
n3 >0F words to be executed if n>n3 ENDOF

Nnd nS <0F> words to be executed if nd4<n<nS ENDOF
etc

optional default words if all above tests fail
ENDCASE

Note that the final endcase drops n from the

stack. If the default case words make use of n
they must DUFP it first.

WORDS TO ALLOW ACCESS TO THE DICTIONARY
(e Sddy)
Used in the form ° ccc to leave the
parameter field address (PFA) of compiled word
CCC Or 1ssue an error message of not found.
Pronounced "TECK . Tick 1is an immediate

36

—F IND

CFA

I1D.

FORGET

LATEST

LFA

PFA

VLIST

11.15

WORDS

definition which means that i1t executes when

encountered during compilation.

{(—— pfa b tf) 1f found
(= TT) 1f not found

Accept the next space deliminated word 1in the
input stream to HERE and search the CURRENT and
CONTEXT dictionaries for 1it. If found leave
parameter field address, byte length and true
flag. Else leave just a false flaq.

(pfa —— cfa)

Convert a word’s pfa to 1ts cfa.

(addr —)

Print word s name from its name field address.

If a name has been truncated by a low value 1n
WIDTH then the name is padded out to its true
length with underline symbols.

Used in the form FORGET ccc

to remove word ccc and all more-recently
defined words from the dictionary. An error
message 1s issued 1if the CONTEXT and CURRENT

dictionaries are not the same.

(——— addr)
Put the name field address of the top word in
the CURRENT vocabulary on TO0S.

(pfa —— 1fa)

Convert a definition's pfa to i1ts link field
address.

{(pfa —— nfa)

Convert a definition’'s parameter field address
to its name field address.

{infa —— pfa)
Convert the nfa of a definition to 1ts pfa.

List all words in the CONTEXT
Terminated by any keypress.

vocabulary.

TO CONTROL COMPILATION

{n ——)
Store n into the next free dictionary location

and advance the dictionary pointer by one
cell. Fronounced ‘comma’.

Used in the form g8 CCC :

Define the following text up to the next

space—delimited semi-—colon as a new word ccc

37

<BUILDS DOES>

;s CODE

ALLOT

Ca

COMPILE

CONSTANT

CREATE SMUDGE

to be added to the dictionary at compile time.
Called a ‘colon definition® this is the basic
building block of a FORTH program.

Used in the form

s 'cec SBUILDS ccece DUOES? 2 oase va 3
to create a new defining word ccc. ccc 1s used
in the form ccc nnn to produce a word nnn

with its compile—time behaviour determined by
the code between <BUILDS and DOES> and 1ts
run—time behaviour by the code between DOES>
and 3 DOES> places the word’'s pfa on the
stack.

This is the machine code equivalent of <BUILDS
DOES> and is used to create new defining
words. It will only function if the Assembler
is resident. Used in the form:

= cccc xxxx 3;CODE <assembler mnemonics> 3
Instructs FORTH to stop compiling and create a
new defining word cccc, then set the
vocabulary to ASSEMBLER and assemble the
mnemonics which follow ;CODE. xxxx must be an
existing defining word such as CONSTANT. When
the new defining word cccc is executed at
compile time in the form:
CCCcCc nnnn
it creates a word nnnn with its compile time
behaviour defined by xxxx and 1its run—time
behaviour governed by the machine code
following cccc. This is advanced FORTH.

in.)

Add n to the value of the dictionary pointer
to reserve space within the dictionary for,
say, an array.

£y o)
Same as , but works for a single byte.

Copy the execution address of the wor d
following COMPILE into the dictionary.

tn =——)

Used to define a constant in the form

n CONSTANT ccc

which sets constant ccc to value n. When ccc
is later executed, it puts n onto TO0S.

Used in the form

CREATE ccc

Creates a dictionary header for the word ccc
with the header SMUDGEd and the CFA pointing
to the FFA. Mostly used to define machine—
code words, after which SMUDGE must be used to

38

DEFINITIONS

EXECUTE

FORTH

HERE

IMMEDIATE

LITERAL

SMUDGE

TASK

USER

VARIABLE

complete the definition. SMUDGE must also be
used before a spoiled or only partially
compiled word can be FORGETed or found by a
later definition.

Sets the CURRENT vocabulary to the same as the
present CONTEXT vocabulary.

(addr ——)}

Execute the word whose cfa is on TO5. This 1s
useful for vectored jumps. eg: VECTOR e
EXECUTE where VECTOR is a variable declared by
the user.

Make FORTH the CURRENT vocabulary. An
IMMEDIATE definition. All dictionary links
eventually chain back to FORTH.

{(~== addr.)

Leave the next free dictionary address. This
is the same as DPL @ . HERE is useful to find
the size of an application.

{ i)

Mark the most recent dictionary definition to
be executed rather than compiled when
encountered at compile time.

{n ——)
If compiling, compile n into the distionary as
a 16-bit literal. Intended use is to allow a

literal to be calculated at compile time eq:
[calculation 1 LITERAL

Toggle the smudge bit in the name field of the
definition in which it falls. Until the
smudge bit has been set, FIND will not detect
the word so it can neither be used, VLISTed
nor FORGETed. Needed with CREATE.

A dummy word convenient for use with FORGET to
discard application programs.

LI) s)

Make a new user variable with offset n 1nto
the user—variable area. Must be used with
care to preserve existing user variables.
Used in the form n USER ccc

{n —=)

Used in the form n VARIABLE ccc to create a
variable ccc with initial wvalue n. When ccc 1s
later executed it puts the ADDRESS of the
current wvalue onto TO0OS. Note carefully the

39

VOCABULARY

CCOMPILE]

11.16

difference between this and the rules for

CONSTANT.

VOCABULARY ccc

creates a new vocabulary ccc. When ccc is
later executed, it makes ccc the CURRENT
vocabul ary. Beri vocabularies should 7=

declared IMMEDIATE.

Used to control compile—time behaviour. L
stops compilation and words up to J are then
executed rather than compiled.

Forces the following word to be compiled even
if 1t has been marked as immediate.

USER VARIABLES. User variables are the variables

used by the system, but also available for use (with care) by the

progr ammer .

They reside in a particular part of the memory and

are i1nitialised by copying a reserved area of memory at the start

of the Forth

possible
the user
executed.

BASE

CONTEXT

CsSP

CURRENT

DP

FENCE

code when a cold start is executed. This makes it

to make permanent changes to the the default values of
variables which will remain in force even if COLD is

{(—— addr)
BASE contains the current value of the base

for number conversion for both input and
output.

(——— addr)
BLK holds the number of the block being LOADed
or zero 1f the input stream is the keyboard.

(——— addr)
Fointer to the CONTEXT vocabulary.

(—— addr)

Used by the system as a temporary store for
the stack pointer during compilation.

(——— addr)
Pointer to the CURRENT vocabul ary.

(—— addr)
Dictionary pointer to the next free byte above
the dictionary. Read by HERE and altered by

ALLOT.

(—— addr)

Contains number of digits right of decimal
point during double number conversion.

Otherwise holds default of —1.

(——— addr?}
FORGET 1s trapped below the address in FENCE.

40

FLD

IN

RE

S0

SCR

STATE

TIB

WARNING

WIDTH

(—— addr)
Unused but reserved by fig.USA for output

field width.

(——— addr?}
Temporary store during numeric conversion.

(—— addr)

Fointer to current position within current
input buffer, either a block or the TIB. IN
1s updated by WORD and zeroed by GUERY.

(n —— addr)
A user variable containing the address of the

most recently accessed memory buffer.

(——— addr)

OUT is incremented by EMIT and zeroed by CR.
It can be usefully examined and altered by the
programmer . For example, a TAB function can
be provided by : TAB OUT e - SPACES ;
()l

(—— addr?)
Rf is used by the EDITOR to record the cursor
location. At other times 1t 1s available to

the programmer .

(——— addr)
The initial value of the stack pointer.

(——— addr)

The number of the last screen to be LISTed.
(—— addr)

A flagqg, which 1s non—zero to show that

compilation 1s 1n progress.

{(——— addr)
The address of the terminal input buffer.

(~—— addr)

A flag to determine the type of error message.
Zero means that errors are reported by number.
1 means that error messages are obtained from
the file MESSAGES.FIG. -1 means that the
contents of ERRVECT (normally ABORT) will be
executed on error. Advanced users may wish to
change the contents of ERRVECT to provide
customised error handling.

(——— addr}
WIDTH determines the number of significant
characters in dictionary names. WIDTH has an

initial value of 31 and may be altered between

41

1 and 31. The smaller the value of WIDTH the 11.18 OPERATING SYSTEM WORDS. Because much of the FORTH

less dictionary space 1s required, but the 1 langquage is written if FORTH there are a number of words in the
greater the chance of ambiguity. { dictionary which "are only there as building blocks towards the
5 useable definitions. Many of these words will be of little direct
11.17 CONSTANTS } value to the programmer and their use may be fraught with danger.
“ Some, however, are very useful at times and their OGlossary
0123 it RR D ” definitions are included here both for completeness and as an aid
These small numbers have been defined as to understanding the inner workings of FORTH.
constants to recognise the frequency of their !
use and speed execution. ; 'CSP Save the stack position in CS5P. Used as part
| of compiler security.
B/BUF Err—. 1)
Bytes per disk buffer. % +BUF {(addrli —— addr2 f }
! Advance the disc buffer address addrl to the
B/SCR (=—t 2 ; address of the next buffer addr2. Flag f 1is
Blocks per screen. false if addr? is the buffer presently pointed
to by the variable FREV.
C/L &z, M) |
Characters per logical screen line. +ORIGIN { n —— addr) |
: Leave the memory address n bytes above the |
FCB . =7 2UH 2 origin. This is used to alter boot up default
A constant containing the address of the | values of some USER variables.
default Tatung/Xtal DOS File Descriptor Block. |
FIRST (——— addr) | AUTOSTART *(addr ——)}
Flace the address of the lowest—numbered 3 Cause a jump to addr on coldstart.
buffer on T0S. |
NEXT This 1s the re—entry point for all f BACK (addr ———)
definitions. It 1is not directly executable. f Calculate the backward branch offset from HERE
All machine code definitions must end with a | to addr and compile it into the dictionary. |
jump to NEXT. For convenience NEXT i1s defined | Used by the compiler to calculate jumps for |
as a constant returning 0145H. , loops and branches. i
USE (—— addr) - CKFILE x(———) |
A variable containing the address of the next | Used by COLD. Checks the console command line |
buffer to use, this being the least recently | for a filename. If found the CREATEFILE 1:1s ‘
accesses one. ; used to access it otherwise a warning 1s
“ issued.

COLDJUMP *{ —— addr)} |
A variable used to hold the cold start vector. |
It is altered by AUTOSTART.

CLOSE *{(—— code)
Closes the file specified by the default Xtal

DOS file descriptor block.

CLRFCB %#{ ———)
Clears the default FDB with blanks.

DOSCALL £ e L — R)
Calls Tatung/Xtal Dos, passing arguments from
the stack to the 780 registers shown and
returning any message.

42 | | 43

COLD

CREATEFILE

DRIVE™?

ENCLOSE

ERRDMA

ERREAD

ERRFCB

ERRVECT

EXT

GETDEF

GETNAME

INTERPRET

RE Sl P s .

Reinitialise FORTH and discard any compiled
words not in the basic FORTH.

*(———)

Open the file specified in the default FDB if
possible otherwise make the file and issue a
warning (new file).

%{ -—- addr)

A variable containing the current default
drive number.

¥(———)
Checks the filename in NAMEBUFF for a colon as

the second character. This 1i1indicates the

presence of a drive identifier and the FDB is
adjusted to reflect this.

The text scanning primitive used by WORD.

WL s)
Set the disc buffer to the default DMA at 80H

*¥{(——— code)
Read the selected record from MESSABES.FIG

*¥(—— addr)

A string variable used as a FDB for
MESSAGES.FIG

*{(addr ——)
Cause a jump to addr on error if WARNING is -1

*{ ———)
Insert the file extension FIG into the FDE.

*(——)

Interrogate Tatung/Xtal Dos and store default
drive in DEF. (used by COLD).

%(———)

Input a word from the console and move it to
HERE.

The outer text interpreter. INTERPRET examines
the i1input stream. Each identified word is
first sought in the CONTEXT and CURRENT
dictionaries. If this search fails an attempt
is made to convert it to a number using the
current BASE (a double number is generated if
it contains a decimal point). I¥f this too
fails an error message 1s generated and
scanning stops.

MAKE

MOVENAME

NAME—-FPAD

NEXTNAME

OFEN

OFENERR

FUTNAME

QUIT

R/W

READRAND

RESET

SETBLOCK

Bh, o)
Makes the specified file. Error 11 i1s
displayed 1f the directory is full.

T riag B
Moves a string from HERE to a reserved area of
memory used as a buffers for filenames.

W e L

Leave the address of a scratchpad used as a
store for a filename during its conversion to
a File Descriptor Block.

2{ o)

Transfers the next word in the input stream to
HERE.

#{(——— dircode)
Opens the file specified in the default FDB at
o hex.

%*{ ———)
Look for MESSAGES.FIG on drive 0. If found

then open it and set WARNING to 1. Otherwise
set WARNING to 0.

® (i o)

Transfer a filename from HERE to FDRE
accounting for any possible drive letter and
adding the extension .FIG 1f an extension was
not present.

Clear the return stack, stop compiling, return
control to the terminal and do not 1ssue a
message. QUIT can be used as an exit from a
complex nest of loops and to suppress FORTH s
normal response ‘ok’.

(addr block f ——)

The disc i/0 primitive. If i1nput of an
unwritten disc block 1s requested then blanks
are assumed. f is O for read, 1 for write. All

disc 1/0 uses the file currently described by
the default FDE.

#{(—— code)
Read a random record from a file specified in
the default FDB.

g A o D
Resets the disc system.

Lk BE, we—=)
Insert a record number into the FDB ready for

45

—_——

a disc read or write.

SETDEF *{(———)
Set drive in DEF as default drive.

SETERR %L Oy
Select record number n of MESSAGES.FIG ready
for ERREAD.

SETDMA %L addr e)
Sets the address which Xtal DOS will use for a
disc buffer {(often called DMA) to addr.

TRAVERCE { addrl n —— addr2)
Move across the name field of a fig.FORTH
variable 1length name field. addrl 1is the
address of either the length byte of the name
or 1ts last letter. If n=1 then motion 1is
towards high memory; if n=-1 then motion 1s
towards low memory. addr2 is the address of
the other end of the name.

WRITERAND *{(—— code)
Write a random record. Error 6 displayed if
the disc is physically full. The FDB must be
fully set wup to describe the record being
written. The write will fail and an error
message be isued if the current file 1is
locked.

XFERNAME L -)

Moves a filename to the FDB from NAME-FPAD (the
area of memory used as a filename scratchpad.)

12 GLOSSARY OF ADDITIONAL WORDS SUPPLIED AS SOURCE CODE

12.1 FLOATING POINT ARITHMETIC. Words to support
floating point arithmetic are contained in the file FLOAT.FIG.
Also in this file are trancendental functions provided by a
Taylor series. The entire fleoating point package is written 1f
FORTH and forms a good demonstration of the extensibility of the
language. Floating point numbers are represented by a double and
a single number and therefore occupy 3 stack locations. The
single number is a signed exponent and is TOS when a floating
point number is on the stack. The double number is a signed
mantissa and is scaled so as to always lie in the range +—1.

12.1.1 Floating Point Defining Words

FVARIABLE Used in the form
f£ FVARIABLE cccc
creates a storage location & bytes long and

initialised to ff. Execution of cccc returns

46

FCONSTANT

Fe

Fe

FDROP

FDUP

F2DUP

FROT

FSWAP

D=

12.1.2

12.1.5

the address of the first byte of this storage
location.

Used in the form

f£ FCONSTANT cccc

creates a word cccc which, when executed,
places f£ in floating point format on the
stack.

Stack Manipulation and Memory Access.

{fE addr i titm)
Store f£ at address addr. Warning 6 bytes are
required. (See FVARIABLE)

(addr ~—— fT£)

Retrieve the & bytes from address, interpret
as a floating point number and place on the
stack.

(fE7)

Drop the fp number f£ from the stack. FDROFP
actually just drops the top 3 stack contents
regardless of whether it was really a fp
number or not.

(tL = £ T80
Duplicate the fp number on TO0S5.

(AL $28 v RAEuRREFT1E (F2L)
Duplicate the two fp numbers on the stack.

(fIf €28 T3£ —— T2 T3£ T1f)
Rotate the top 3 fp numbers bringing the third
to T0S.

(f1£ T8 ~t T2k 118)
Swap the top two fp numbers on the stack.

Floating Point Number Input and Output.

(n ~rv TE)
Convert the single number on the stack to fp
format.

() e TEL) N
Convert the double number on the stack to fp
format.

AT)

Output the floating point number on the stack
to the current output device in scientific
format.

47

FEIN

-/

FMOD

FMINUS

FINT

F<

F{=

12.1.4

(-~ it L)

Suspend program execution and await input from
the keyboard and convert it to a fp number.
Any sensible numeric input 1s accepted
including scientific notation. In this case
the exponent sign 'E’° must be preceeded and
followed by a space. A leading + is not
permitted. Any 1illegal input generates an

error message. Examples of valid inputs are:

E 1s used to allow fp numbers to be entered
directly on to the stack. It 1is used after a
single or double number and followed by an
exponent. FORTH recognises the E and converts
this 1input to a fp number which is placed on
the stack. eqg:

123 E O <cr> ok

Faiserd>

1.23 E 2 ok

Arithmetic and Comparators.

(f1£ 26 —— 3£)
Leave the fp product of two fp numbers on the
stack.

T IR " TEE AL ")

Leave the result of fl1£ /7 f2f£ on the stack. A
check that the stack depth is adequate for
this operation 1is made and error message
results 1f the stack is not at least 6 entries
deep.

(T1f 28 — t3L)
Leave the sum of fif and f2f£ on the stack.

(fi1f f2£ —— f3£)
Leave the difference flf — f2f on the stack.

(f1f f2€£ —— ¥3f)
Leave the modulus of fl1f /7 f2£f on the stack.

(TE£ mum T8
Negate the fp number on TO0S.

(T S—aieEE)
Leave the integral part of f1lf still in fp
format.

(fl1f f2£ —— *T)
Leave tf if fl1f < f2f£.

(f1f f2£ —— ¥)
Leave tf 1f flf <= f2f.

F o= (T1£ f2€ —— *)
Leave tf 1f f1£ >= T2f.

F> (Tl 28 —— T)
Leave tf 1f f1£ > f2f£.

F<O e s B
Leave tf 1Tt ff 1s negative.

12,%.9 Floating Point Constants. A number of
floating point format constants are present in the system. These
were mainly implemented as an aid to writing the floating point
package but are, of course, available to the user. Examples are
F1, F10, F.1 etc. Each returns the number associated with its
name. Pl 1s also available when the trignometric words have been
loaded.

12.1.6 Trigs and Trancendentals. The latter part of
the FLOAT.FIG file contains a number of routines to calculate
trig values.

SINE B ¢ e engit o o 0
Leave the SINE of ff (expressed 1in
degrees).

COSINE (£ ~~—~ TE1})
Leave the COSINE of f£ (expressed in
degrees).

TANGENT T ety Eed
Leave the TANGENT of f£f (expressed in
degrees).

FSOR { £ ——= T£1)
Leave the square root of f£. An error
results 1f f£ is negative.

ARCSIN—-RAD (fE —— T£1)
Leave the arc sine of f£f expressed in
radi ans.

ARCSIN-DEG (TE —== T£1)
Leave the arc sine of f£ expressed in
degrees.

12.2 FUNCTION KEY PROGRAMMING. Words to handle function
key programming are contained in the file FUNKEYS.FIG

CLRKEYS ey

Set all function keys to produce null bytes.

49

-\!

FUNKEY

1KEY

KEYLIST

12.3

GRAPHICS EXTENSIONS.

({ N ===
Used in the form:

n FUNKEY "string"

where string is a quote delimited character
string. This sets function key n to produce the
string provided. n i1is in the range 0—-15. Keys may
be redefined at will and may be terminated with a
c/r symbol produced by GRAPH-ENTER i1in which case
they execute immediately. The leading quote 1s
optional if no leading spaces are required in the
string. Function key definitions may be entered
directly from the keyboard or loaded from disc
blocks.

{ n == 3
Print the string associated with function key mn.

{ ool D
List the current settings of all the function
keys.

Words to exploit the Einstein

Graphics are in the file GRAPHICS.FIG

FLOT

UNPLOT

FOINT

T0O

FPOLY

ELLIPSE

{ %Y ")
Set pixel at x,y to the current graphics
foreground colour.

€ NP
Set pixel at %,y to the current graphics
background colour.

{ R W il)
Return tf if pixel at x,y is foreground or ff 1if
background.

(%3 LR ETYE K ..)
Draw a line from x1,y1l to x2,y2 of type t. t 1s 1n

the range 0-5 and produces the same line types as
BASIC.

{ R Y-)
Draw a line of type t from the most recently drawn
point to x,y.

(. Xy RS Y8 Lirrmean)

Draw a polygon with n sides and line type t. The
polygon will be centred at x,y and will fit in an
ellipse with horizontal and vertical half
dimensions of xs and ys.

{ x v x5 ys £t ——)}
Draw an ellipse centred at x,y using line type t.

50

ORIGIN

COLFILL

GCOL

SECTOR

PARTFPOLY

12.4

The horizontal and vertical size of the ellipse is
governed by xs and ys.

$ Ay s)
Offset the graphics grid origin to a point x,vy.

L. M N e 3

Fill a shape surrounding point x,y with colour. If
x,¥ 1is background then the current foreground
colour is used; if x,y 1is foreground then
background colour is used.

{ T bak ——— ')
Set the graphics colours to for (foreground) and
bak (background).

(. nk NZ X oy K8 . Y8 Birsr g

This word allows part of an ellipse to be drawn.
If f is true then when the sector has been drawn
lines will be drawn from the centre to the
perimeter. If f is false only the perimiter will
be drawn. nl is the start angle 1n degrees
{anticlockwise from the 3 o'clock position) where
drawing will commence. n2 1is the angle were
drawing will cease. The rest of the parameters are
as for the ellipse command.

(£f'nl N2n RNy XBiYE £ S-a

This is similar to SECTOR but part of a polygon is
drawn. Again f is a flag which is false i1f only
the perimeter is to be drawn or true if lines are
to be drawn from the centre of the polygon. nl and
n2 are the start and finish angles 1n degrees.
Note that a whole number of sides is always drawn.
The rest of the parameters are as for the POLY
command. As well as drawing parts of polygons
PARTPOLY can be used to draw a complete one at any
desired angle on the screen.

eg. 4 100 100 S50 S0 O POLY

will draw a regular polygon with 4 sides at co—
ordinates 50,50. The polygon will be orientated as
a diamond.

By contrast:
0O 45 405 4 100 100 50 50 O PARTPOLY
will draw a similar 4 sided figure but with 1its

sides parallel to the screen edges. Note that the
finish angle in this case is 360+start_angle.

SOUNDS. Words to assist with programming the sound

generator are in the file SOUNDS.FIG

51

— e
e —

PSG!

FREQGA

FREQB

FREQC

FREGN

ENABLE

CHANNEL

VOLA

VOLB

VOLC

ENVELOPE

HAAC

12.95

SPRITES.

S e
Store byte b in register n of the PS5G chip.

{n ——)
Set channel A to n Hz.

{n —)
Set channel B to n Hz.

{(n —)
Set channel C to n Hz.

{ N ===)
Set the noise frequency to n Hr.

{ D =)

Send byte b to register 7 of the P56 chip (enable
register) after adjusting 1t to ensure that the
keyboard will not be disabled.

{ cn bn an ct bt at —— }

The six parameters are flags which are true to
turn the selected channel on or false to turn it
off. cn, bn and an couple the noise generator to
channels a, b and c respectively. ct, bt and at
select the tone channels ¢, b and a respectively.

gy -y)

If n is in the range 0-15 select a fixed volume on
channel A proportional to n. If n is over 15 then
couple channel A to the envelope generator.

£ et S)

If n is in the range 0-15 select a fixed volume on
channel B proportional to n. If n 1s over 15 then
couple channel B to the envelope generator.

£ N ey

If n is in the range 0-15 select a fixed volume on
channel C proportional ton. If n is over 15 then
couple channel C to the envelope generator.

£y A 1)
Set the envelope period to n/100 seconds.

(T8 T2 T3 TR —~=~—)

Set the hold, alternate, attack and continue bits
in reqgister 13 of the P56 chip according to the
flags f1 to f4 respectively. See pages 296299 of
the BASIC reference manual for details.

Words to allow the creation and movement

of sprites are contained in the file SPRITES.FIG.

52

VDF!

MAG

SPRITE

SPRITE-OFF

SPRITES-OFF

SPRITEVAR

!

{ b req ——)
Store byte b in register reg of the VDP chip.

L i =)

n 1s in the range 0-3 and has the same effect as
in BASIC.

B N vy N et
Sprite command works as for BASIC. X co—-ordinates

are i1in the range —-33 to 255. Y co-ordinates are in
range —-33 to 191.

€. BN Ly
Switch off sprite number S.

£ "pree= i)
Switch off all sprites.

L Ko TN et
A defining word used in the form:

S CN SPRITEVAR name

This creates a sprite that is identified by name
and requires only its x,y co-ordinates on the
stack to display it. Eg:

2> 15 176 SPRITEVAR ALIEN
{ create sprite variable)

100 100 ALIEN (display sprite at 100,100)

53

12.6 UTILITIES. A number of useful, general-purpose,
definitions are supplied in the file UTILITY.FIG. The words

supplied are:
12.6.1 SCREEN 1. RANDOM NUMBER GENERATOR. £IN
CHOOSE (ul —— u22 !
Return a random number in the range 0 < u2 < ul.]
o SO SCREEN 2. MACHINE CODE CALL.
CALL { adar -—-—-) ADC
Make an unconditional jump to a machine code
subroutine at addr. Note that FORTH will crash 1f
register BC is not preserved.
BTN
12.6. 95 SCREEN 3. ARRAY DEFINITIONS.
CARRAY A defining word to create a character or byte
array. Used in the form:
n CARRAY name
creates an array called name of length n bytes. 1R
Subseqguent use of name in the form:
KSCAN
n name
leaves the address of the n'th byte of the array.
Note that there are no checks for array boundary
over flow.
ARRAY Similar to CARRAY above, ARRAY creates an array of
16 bit cells suitale for the storage of integers.
STRING A defining word used in the form:
STRING name "quote delimited literal string”
Subsequent use of name leaves the address of the
literal string which has its length in its first
byte. Eq.
STRING ERRMESS "Operator brain failure®™
ok { string now defined ?
ERRMESS COUNT TYFE
Operator brain failure
ok (string output) U
00000001
00000010
12.6.4 SCREEN 4. NUMERIC INFUT & ADC PORTS. 00000100
DEIN (—— n) ”Uo?éﬁﬂﬂ
Wait for input from the console and convert it to 00010000
. . 00100000
a double length number which is placed on the 01000000

b4

12.6.

stack. This allows for prompted numeric i1nput. An
error will result if the keyboard input cannot be
converted to a legal double number.

(i %)

Wait for input from the console and convert 1t to$
a single length number which is placed on the
stack. This allows for prompted numeric input. An
error will result if the keyboard input cannot be
converted to a legal number.

{ chan —— n)

Return value between ©O and 255 from analogque
channel chan. No noise smoothing is carried out.

(POt e 979
Returns tf 1if Jjoystick button on ADC port 1s
pressed. Arbitrary results will be returned 1if

port is not 1 or Z. e
= SCREEN 5. DIRECT EKEYBOARD SCAN.

{ BY - B)
Leave the one’'s complement of bl as bZ.

.M, — GOk)

Directly scan the kevyboard matrix row or rows
selected by the bits set in row. Return a byte
consisting of zeroes for unpressed keys i1n those
rows and ones for pressed keys. This word enables
multiple and continuous keypresses to be detected
and is primarily of use when writing arcade games.
Note that this definition uses the word PS5G! which
is also defined in the SOUNDS.FIG file. The
keyboard matrix is laid out thus:

COH_

¥ O O O 0 O O L
O 1 O O O O O .
O O | O 0O 0O 0)
O O 0 1 O O O O
O O O O i i 4 O
O O 0O 0O O | O D
O O O O O O i O
O O O O O O O]
128 64 32 16 8 i . i
ESC SP CR F7 0

O 172 'curs (= 1/74 F k I
FS 9 curs 3/4 3 - 8 i
F4 e = DEL 8 f " é
F3 | 2 5 4 9 & 7
F2 (8 ind E R T Y L
F1 A S D F G Hi " |

b5

P L -

10000000 128

FO Z X C Vv B L ™M

12.6.6 SCREEN 6. INTERNAL CLOCE WORDS

TIME=

GET-TIME

. TIME

TIME®@

TIME'!

T o g B

Used in the form TIME= nnnnnn where nnnnnn 1s a
six digit ascii string equivalent to the time at
which the internal clock is to be set.

v)
Wait for kevyvboard input. Attempt to set clock to
the value represented by the string entered.

g i
Frint the current time on the system clock as a
six digit character string.

{(—— h ms)

Read system clock and leave hours, minutes and
seconds as three single length numbers on the
stack.

€. TN MW el
Set the system clock from the three numbers on the
stack.

12.6.7 SCREEN 7. SERIAL FPORT WORDS.

BAUD

SERINIT

»5ER

SER>

?5ER

8 X TR et
Set receive baud rate to rx and transmit rate to
tx. The permitted range 1s 73 to 9600 baud.

{ bits stops parity ——)
Initialise serial port using characteristics on
the stack.

bits is from 5 to 8.

stops 1is 1 or 2.

parity 1is O for no parity, 1 for odd and 2 for
even parity.

{ D P}

Send byte b to the serial port. There are no
checks whether the port is actually ready to snd
another character.

i Y)
Accept byte b from the serial port. The value 1is
undefined i1f no character i1is actually ready.

{ ~— b)
Examine serial port status. 75ER returns a 3 bit
number in the range 0-7.

56

12.7

DO< D=

DOSTOOLS.

BIT O is set 1if any error is detected (parity etc)
BIT 1 1s set if the tx port is empty
BIT 2 is set 1if the rx port has a character ready.

Eg. To wait until the tx port is empty then send
the byte on the stack try:

BEGIN 7?SER 2 AND UNTIL >SER

12.6.8 SCREEN 8. DOUBLE NUMBER EXTENSIONS.

A R e -
Leave the double number product of double number d
and single number n.

(83 'nr—a)
Leave the double number quotient of double number
d and single divisor n.

{ d1 d2 - a3)
Subtract d2 from dl and leave double length
difference d3.

D>

These are double number equivalents of the single

length number comparators provided in the basic
FORTH core.

Words in the 3 screens of this file allow

access to the disc directory, transfer of screens from one file
to another and deletion of the current file. |

DIR

DIRO
DIR1
DIRZ
DIR3

TOSCRATCH

- SCRATCH

FMSCRATCH

12.7. 1 SCREEN 1.

12.7.2 SCREEN 2.

DIRECTORY.

A g I
List the directory for the default drive.

(v
List the directory for a specific drive.

SCREEN SCRATCHPAD.

& Nomeri)
Copy screen n from the current file to a RAM-based
scratchpad area.

. mimde)
List the current scratchpad contents.

{n —=—=—20>

Copy the scratchpad contents to screen n of the
current file overwriting anything already there.

57

Note that the current file can be changed between
uses of TOSCRATCH and FMSCRATCH. This allows the
transfer of screens from one file to another. If
only a few lines need to be transferreit may be
easier to use the editor PAD and the editor CTRL-LC
and CTRL-F or CTRL-I commands.

12.7.3 SCREEN 3. DELETE CURRENT FILE.

DELETE-FILE

&y D
Delete the current file from the disc. Most
useful if you mistype a file name which FORTH then

creates for you.

58

Imiu Et!"-r"h'-!l-"rr.E peary e U e LA ERREC NS RO TP L TR e B - I ! ik

13 ASSEMBLER

el due REE wdSh wd i i o

19. 1 INTRODUCTION. Einstein SuperFORTH includes A
machine code assembler using Intel 8080 mnemonics. The assembler
is contained in a separate vocabulary called ASSEMBLER. The

assembler vocabulary can be viewed by typing ASSEMBLER VLIST. It
is not usually necessary to invoke the assembler vocabulary
directly since the assembler defining words switch between this
and the FORTH vocabulary automatically. There is very little
that can be done with the assembler that cannot be daone with
FORTH words but assembler will, of course, be faster. A good
program development technique 1s, therefore, to first write 1n
FORTH then optimise critical words in assembler.

13.2 NOTATION. Like everything else in FORTH the
assembler uses Reverse Polish Notation.
i1e. Instead of: MOV AE we write: E A MOV
This follows the usual FORTH convention of source coming before
destination. Jumps and loops are handled in the normal FORTH
manner, by use of BEGIN UNTIL etc., rather than by Jjumps and
labels. An example of an assembler definition using a control

structure will be found at the end of this section.

13.3 DEFINING WORDS. Assembler definitions are started
with the defining word CODE which 1s the exact equivalent to the
colon in a normal FORTH definition. The definition is ended with
C; which 1is analagous to the semi-colon at the end of a normal
FORTH definition. It is essential that assembler definitions end
with NEXT JMP (a jump to the FORTH inner interpreter) and that
register BC 1s preserved.

15.4 MACROS AND LABELS. The assembler can be extended by
defining macros or machine code subroutines. The format 1s:

MACRD name machine code j
This creates a new assembler word {(name) which can be used 1n

assembl er definitions just like the standard assembl er
vocabul ary.

Eq. HEX MACRO IXFPOF pOEs 1 O, 3
IXPOP can now be used in assembler definitions as required.

Machine code subroutines are created in the following manner:
LABEL name assembler mnemonics RET C;

Some sort of RET instruction is essential. Such a subroutine can
be called from other assembler words with:

name CALL

09

T R PR MLF S Prep ot 8 P8 B YT 5 o e s

13.9 MNEMONICS. The assembler mnemonics are listed below
with their Zilog 7280 equivalents. r is any 8 bit reqgister or M,
rp is a 16 bit register pair.

13.5.1 REGISTERS.

leaves
leaves
leaves
leaves
T complem

ETBAX

FORTH 280 FORTH 280
PSW AF 3 &
B B or BC D D or DE
H H or HL M (HL)
E E C C
SP SP L i

13.5.2 OPERATORS.
FORTH 280 FORTH 280
data rp LXI LD rp,dataléb data r MVI LD r,data8d
rli r2 MOV MOV r2,r1 addr’ JMP JFP addr
RET RET RM RET M
RP RET P RPE RET PE
RPO RET PO RC RET L
RNC RET NC RZ RET Z
RNZ RET NZ addr CALL CALL addr
addr CHM CALL M, addr addr CP CALL P, addr
addr CPE CALL PE, addr addr CPO CALL PO, addr
addr CC CALL C, addr addr CNC CALL NC, addr
addr CZ CALL Z,addr addr (CNZ CALL NZ, addr
addr LDA LD A, (addr) addr STA LD (addr) ;A
addr LHLD LD HL, (addr) addr SHLD LD {(addr) ,HL
data CPI CP data data ORI OR data
data XRI XOR data data ANI AND data
data SBI SBC A,data data SUI SUB data
data ACI ADC A,data data ADI ADD A,data
port IN IN A, (port) port OUT OUT (port),A
n RST RST n rp DCX DEC rp
rp INX INC rp r DCR DEC r
r INR INC r B LDAX LD A, (BC)
D LDAX LD A, (DE) B STAX LD (BC),A
D STAX LD (DE),A rp PUSH FUSH rp
rp POP FPOP rp rp DAD ADD HL,rp
r CMP CP r r ORA OR r
r XRA XOR r r ANA AND r
r SBB SBC A,r r SuUB SUB r
r ADC ADC A, r r ADD ADD A,r
CMC CCF STC SCF
CMA CPL DAA 30
XCHG EX DE,;HL XTHL EX (SP) HL
SPHL LD SP,HL FPCHL JP (HL)
RAR RRA RAL RLA
RRC RRCA RLC RLCA
El EI DI DI
HLT HALT NOFP NOFP

13.59.3 TESTS.

60

13.5.4

true
true
true
true
ents

STRUCTURES.

flag
flag
flag
flag
flag

IF ELSE THEN (or ENDIF)
BEGIN AGAIN
BEGIN UNTIL
BEGIN WHILE REPEAT

13.6

M flag set
P flag set
C flag set

Zz

flag set

stack

all these work in a similar manner to their
FORTH equivalents.

AN EXAMPLE.

with the value byte.

An assembler definition for the
word FILL (addr count byte ——) which fills an area of

FORTH
memory

CODE FILL { start and name definition ?

B H MOV cC L MOV (get ready to preserve BC)
D POP (byte in E)
B FPOP (count in BC)

XTHL (addr in HL, BC saved on stack)
BEGIN (start of loop)

E A MOV { byte in A)

A M MOV (byte in addr pointed to by HL)}
H INX { next address)

B DCX { decrement count)

C A MOV B ORA Q= { check if count zero)

UNTIL

B POFP { restore BC from stack)

NEXT JMFP C; { return to FORTH interpreter)

Incidently there is a major bug in this definition. If it 1s
called with count=0 it will fill 64K RAM locations with byte!
This could be corrected by using the BEGIN WHILE REPEAT structure
instead of BEGIN UNTIL. It would be necessary to invert the
count test with NOT if this structure is used. 1e.

BEGIN ...ccccacees 0= NOT WHILE REPEAT

14 COMMON FORTH ERRORS

i e el ST AN TSNS e e el kel I (PR TS S S— S m—— ——

14.1 FORTH has minimal error trapping built in. Its nature
allows the programmer to make whatever checks are necessary and
make his own tradeoff between speed and robustness. Frograms can
be developed with checks in place and these removed later once
all is well. Because of this design philosophy crashes will be

more frequent that with BASIC. It is good practice to FLUSH all
major amendments to code before testing in case a major crash
occurs and the editing work is lost. Some common errors are

61

detailed below.

14.1.1 VARIABLES. Kemember that variables return
the address where the value is stored, not the value itself.
Contrast this with CONSTANT which actually returns a value.

14.1.2 STACK OVERFLOW/UNDERFLOW. Stack range errors
are only detected by FORTH when control returns to the user
console. If the stack empties during a long loop then execution
will continue but arbitrary values will be read from the stack
with unpredictable results. If the stack overflows enocugh to meet
the dictionary then a crash will result. Such effects can be

avoided by testing each word seperately and examining the stack
effects with .5 or by use of STON/STOFF.

14.1.3 ARRAYS. Most FORTH arrays leave an address in
the same way as variables. Normally no range checks are made and
writing outside the array boundary will arbitrarily alter the
dictionary contents with, usually, disasterous consequences.

14.1.4 BASE . Be aware of what base you are in. Some
words change the number base. This may be worth checking if a
tested word suddenly misbehaves. Note that the command BASE 7?7 or

BASE € . always give 10 because the current base is used to print
the result. To find the truth use BASE & £,

14.1.5 INFINITE LOOPS. There is no overriding BREAK
function in FORTH. Infinite loops are, therefore, fatal. A break
control must be explicitly programmed by the user if needed.
BEGIN......ABGAIN is an intentional infinite loop which must only
be included in a fully debuqged application. Note however that:

BEGIN ...cccvunee© UNTIL and BEGIN...1 WHILE......REPEAT

are also infinite loops.

14.1.6 AMNESIA FAILURE. - (I¥f wyou can't forget a
word.) If an error occurs during the compilation of a word (
either directly from the keyboard or using LOAD) the word’'s name
will be visible 1f VLIST is used but will not be found if FORGET
is used. This 1s because a word’'s name is SMUDGED until it’'s
definition i1is complete. It is this feature that allows a name to

be redefined in a later definition. To remove the part compiled
word type: OMUDGE FORGET name.

15 MODIFYING FORTH

15.1 Default wvalues of the FORTH user variables can be
altered by the user. The way this is is done and the location of
other useful flags and pointers are described below.

192 Computer /processor name: The word .CPU prints the
computer or processor name. The name 1s stored as a base 36
double i1nteger at address 0122H. Some variations are:

62

L3
:“‘A!: p———— - AR IS R LI W W R | SN St o T L e e e R o

HEX © 122 ' B250 124 ' gives 780
HEX 19 122 ' 1344 124 ' g%veg 280/
HEX S5 122 ' B320 124 ' gives 8080 etc.

19.9 Initial values of USER variables: the word +0ORIGIN 1is
used to access the area of memory where the default valuse of
user variables are stored. 6 table of values and +ORIGIN of fsets

follows:

Of fset Present value Function

8H 1 Fig release number

9H 1 Fig revision number

OAH Z User revision number : ;

OCH Address of top word in dictionary on
boot up

OEH 7FH Backspace character

18H iFH Initial WIDTH

1AH O Initial WARNING

1CH Initial FENCE _

1EH Initial dictionary p91nter

20H Initial vocabulary link

For example you can change the backspace character to 7D by:

HEX 4 OE +ORIGIN ' <CR>

i i G S S S — —— —

e el TR ik R E—— ——-—i_ﬂ-—_“#

16.1 To save a compiled applicatinn“it is necessary to
first compile the source code into the dictl?nary then a}ter ths
boot up parameters to reflect the changed dictionary size ::
lastly exit to Tatung/Xtal Dos and use SAVE to Eiiyl Dnz
application to disc as a oM file. When run from Tatung/Xta :
the new program will still give the FORTH header_but the_range ud
words will be extended to include all those ﬁﬂﬂpll&?. This metho
can be used either to save an enlarged version of F?HTH
containing additions and utilities or to create an app11cat%Tnj
program. The sequence of commands needed to save a cCcomplie€e

application is as follows:

DECIMAL ;
LATEST 12 +0ORIGIN ! (top name field address)
HERE 28 +0ORIGIN '! (initial fence)} -

HERE 30 +0ORIGIN '! (initial dictionary pointer)

({ to see how many blocks need to be saved use:)
HERE 256 /7 1+ .

These commands have been made into a FORTH H?rd SAVE If a new
vocabulary has been declared in the applicatlu? the vncahu%ary
linkage pointers must also be updated before saving the compiled

application. Use the sequences

63

F

vocabname 6 + 32 +DRIGIN ¢

16.2 AUTOSTART APPLICATIONS. A compiled application can
be made to autostart by the sequence:

© NAME AUTOSTART

where NAME is the word to be executed on cold starting the
system. If NAME is not a closed loop then it must end with OQUIT
or ABORT. Use of AUTOSTART and ERRVECT together with closed 1loop
programs enables applications to be written in which the FORTH
kernal remains invisible and protected. As an alternative to
writing an application program as a closed loop it is possible to
patch the directory so as to limit the range of commands

available to the user. One of these must, of course, be DOS The
method is as follows:

Compile a dummy word (eq : BOUNDARY :) above the application
Redefine all the desired commands above this boundarvy.
Set the LFA of the dummy word to O. eg. 0 ° BOUNDARY LFA *¢

This stops dictionary searches at the boundary word but allows
use of all the subsequent definitions.

64

17 MEMORY MAP.

ARl nki i - —

] . —— i S e m——

FIRST

SO

ORIGIN

I User 1
| | Area |
I Rtn Stk I
) I
I V " I
1 Term Buff I
I Stack 1 I
I V i
Spare RAM

it ikl . R T S i Y S SR T— i—— i . W Smm— e

EEEELr CETIE D EmmEer mEes T SR SEESE CESN] SESmAT S =i

65

ECOOH

DB8OH

DBA4giH

TIB
DAAOH

PAD

100H

18

e
™
s
S
o,
™
N,

& P D

2 2 X0 2292023 YD

> ?

¥ 2 X ¥ K ¥ 3

2.2 ¥ 2 ¥)

I
|

TETALE STOAAS ECSLE LSO RSESe ST aATE

'R+80H!

1fa !

' cfa !

' pfa !

Vv

W et Nt Nyt e

pfa Farameter field.

e b TR T

g G e T e, e R bk iy i e A i R e ol s Sl el i P e i .

DICTIONARY ENTRY STRUCTURE.

LA ML TN DR SR SEeL armege cmmc PSRN ELat mTRE MRS CHT MR SR R
AR LEEPNT SR A EEmES. SRR gL il W Sfeems e st ESem EOMOS SR EPT Sl GGARN. GS S

EXPLANATION

name fTield address (nfa) contains bits as follows:
b4-bO=length, bS=smudge, bé=immediate, msb=1.

Ascii characters making up name up to
limit imposed in WIDTH.

Last character has top bit set.

Link field. Points to previous word’'s nfa.

Code field. Foints to machine code for this

definition. This could point 2 bytes forward to
the pfa for a machine code definition or to
machine code elswhere in the case of a colon

definition, wvariable etc.

Usually a list of addresses of
other FORTH words® cfas or actual machine code.

Last addr of colon definition would point to special
definition ending word. Machine code definition would

have a jump to NEXT here.

Next word starts here

etc.

INCREASING MEMORY

66

19 FURTHER SOURCES

mRAETE DRSS MR frmees epeemsies =ledlla

17.1 BIBL IDGRAFPHY. The FORTH bibliography is large and
rapidly growing. The books mentioned below are those that have
been seen by the author. Other guality titles may have been
over looked.

Starting FORTH
Leo Brodie

This is the definitive introduction to the language and 15
probably one of the best written computer books on any subject.
It details the FORTH. Inc implementation which differs in a number
of important and potentially confusing ways from fig.FORTH. It
is nonetheless a splendid introduction to the language.

FORTH PROGRAMMING
Scanlon

is largely a list of well commented source examples. The

Useful.

This
fig.FORTH dialect i1is covered.

Systems Guide to fig.FORTH
Ting

Probably the definitive reference covering the inner working of
fig.FORTH. Expensive but detailed.

FORTH Encyclopaedia
Baker and Derrick

A complete programmer s manual for the language. Comparisons of

fig.FORTH and FORTH79 are presented.

Threaded Interpretive Languages
Loel 1ger

using the 780

FORTH-1ike 1anguages

Explains the theory of
processor for the examples.

All About FORTH
Haydon

An extensive glossary giving examples in fig.FORTH, FORTH/9 and

MVF FORTH. Good value and an invaluable aid to those converting
programns from other FORTH dialects. Explains the inner
mechanisms by means of a FORTH inner interpreter written 1n
FORTH.

67

E o e e DT O o R { T e e M i o e i i e o

FORTH Implementation Manual and Source Listings

These FORTH Interest Group US publications are of great value to
those who whish to explore the inner workings of FORTH in great

detail. They are available from a number of sources including
the UK FORTH Interest Group.

1.2 FORTH INTEREST GROUF UK. Users may find it useful to

Join the FORTH Interest Group. Members receive a magazine and
have access to a comprehensive library and reduced price books.
At the time of writing (November 1984) the membership secretary

15

Roger Firth
7 Wyndham Crescent
Woodl ey

Reading

)
|

20 ERRUOR MESSAGES

20.1 If file MESSAGES.FIG 1s available on drive ©O then
text error messages will usually be available. If not then
numeric errors will be issued instead. These have the following
meanings:
| Empty Stack
2 Dictionary Full
T Has Incorrect Address Mode
4 Isn"t Unique
b’ Stack Depth Inadequate
& Disc Range Error
7 Full Stack
8 Disc Error
9 Lowest Block Available 1s 1
10 No File Open
11 Disc Directory Full
12 Divide by Zero
13 Negative Square Root
14 File 15 Locked — Read Only!

15 Einstein fig.FORTH

i6

17 Compilation Only, Use in Definition
18 Execution Only

19 Conditionals not Faired

20 Definition not Finished

21 In Protected Dictionary

22 Use Only When Loading

235 Off Current Editing Screen

24 Declare Vocabulary

69

