¥ EINSTEIN _
COMPENDIUM

CUR SPECIAL THANKS TO OUR WIVES, CAROLINE AND FAT. WITSDOT
WHOSE UNDERSTANDING THIS BOOK WOULD NOT HAVE EEEN POSSIBLT.

THE EINSTEIN COHPENDIUH
COMPILED BY MIKE SMALLHAN & GRAHAM BETTANY

This book contains a selection of programs and information
for +the Tatung Einstein computer collected by the U.K.
Einstein User Group.

Within these pages you will find a collection of programs
ranging from simple one liners in Basic to machine code
utilities.

Also included are explanations on the Einstein video
display processor (VDP), and the disc operating systenm.
These are included to give the reader a greater insight
into the workings of the Einstein.

Al11 programs within this book are 1listings taken from
working copies. If you experience problems with any of the
programs the U.K.E.U.G. are prepared to answer queries
provided a S.A.E. is included, address as below.

For those of you who find typing in long listings a daunting
task, a disc copy of all the programs is available on a 3"
disc for £10 including P+P from;

U.K.E.U.G.,

80 DALES ROAD,
IPSWICH,
SUFFOLK,

IP1 4JR.

Please make any cheques/postal orders payable to U.X.E V.G

The copyright of the programs remain with the original
author and the U.K.E.U.G.

Whilst every effort has been made to guard against faults or
errors, the U.K.E.U.G. will not be held 1liable for any
consequential damage resulting from the use of the programs
within these pages.

All rights reserved. No part of this publication may be
reproduced, stored in any information retrieval system oOr
transmitted in any form or by any means without the
permission in writing of the U.K.E.U.G.

EINSTEIN is the trademark of TATUNG (UK) LTD.
XTAL is the trademark of CRYSTAL RESEARCH LTD.
CP/H is the trademark of DIGITAL RESEARCH LTD.

CONTENTS

PROGRANNING TR BASIE .o, oo viiecicn s 1
OBE:-LIBRERS v cvsiinn - vnisnnsi- Foviakine v v 3
EMRIDESOORE + o i e 5
COLLISION DETECTIDN i-stwnsi vuvitiosuane- 6
PERLBL e e e 7
CIPHERS sisis, Baia ki pis. . B I e A 8
BISINC-SHN- s s snsavsead % St it 10
BEETRINT waissisata o4 S A B a 11
SR R S R e e 12
BORBRE . e SR 23 i s s 14
DRAWING WITH THE EINSTEIN SH T LD 15
PIRE DRAR i o s e At St e
BIORTTHE . o il i B e e 10
A DAY AT THE RACES 5 ik e SR 22
EDENTIRIT o v vosoen SRS Cu e o 27
T s e SRR e Ll 34
BORSE TRATHEE. . o iveivnn sttt ot s 42
RUBIKS QUBR. iiiioia. 7o o S) i 45
DISCS i s w4 S e 51
DISC OPERATING SHSTBHE ..vovevcvaiivaneans 55
AUTO-BOOTING ' 55 Soc e ansnlas i e s e Fi-
BEAD e - e B e e 83
BMERASE i R = Tl MR
BN ISILAT e R 69
ERARLTER SET .. oo i e e Ot 80
ENBEACIER - LEGIENER s v nsscviinsinny e .. 82
PRINTER GRAPHICS J R iis.as B

SCRATCHPAD o o R R PR 89

PROGRAHMING IN BASIC

Beginners All-purpose Symbolic Instruction Code, better
known as BASIC is one of the most widely wused programnming
languages in the world. It was invented in the USA in 1964
for the purpose of enabling people to write computer
programs in a language that was quick and easy to learn.

Unfortunately over the years many variations of BASIC have
been produced for different machines, this has created a
situation where a BASIC program on one machine will not
transfer readily to another. XBAS, developed by Crystal
Research is5 the version of BASIC supplied as standard with
the Einstein.

Unlike most home micro-computers the Eianstein does not have
a language resident in the machine, BASIC being loaded from
disc. This has several advantages:

a) Improved versions of BASIC camn be supplied om disc.

b) Additions to the BASIC are possible.

c) If BASIC is not loaded there is more memory available for
machine code programming.

d) Other languages can be loaded from disc.

There are many ways of writing a BASIC progras. the overall
aim should be to produce a program that works!! there are
however a number of other factors to take into
consideration. BASIC is a high level language, this means
that it wuses instructions or statemexts similar to the
English language. This requires a piece of softsare called
an ’interpreter’ which coaverts eackh BASIC lime into its
machine code equivalent. A& poorly surittea BASIC program will
run more slowly and use up more mesory, here are a few tips
that will help you write more efficieat prograas;

a) REH statements are essential aids to developing prograss,
however they take up memory space and although not acted
upon still have to be interpreted thus slowing down the
operation of the program. #Whilst a program is under
development it is useful to use many EENs, after completion
this copy of the program can be saved as a library copy and
the program to be used camn have all its RENs removed. 1If
modification is required in the future the library copy can
be recalled and the same process repeated.

b) When using sub-routines, i.e. GOSUB, XBAS searches for
the line number of the sub-routime starting from the GOSUB
line number. Therefore keeping the sub-routines as close as
possible to the calling line will emsure that as little time
as possible is wasted in searching for the sub-routine.

PROGRAMHING IN BASIC

¢) The most commonly used variable should be assigned first,
this is due to the way that XBAS allocates memory space for
variables. The first assigned variable is located at the top
of +the variable list and will obviously be found before a
variable further down the list.

d) Every variable you assign in a program OCCupies memory
even if it is only used once. Therefore try to use the same
variable throughout the program. i.e. Separate FOR/NEXT
loops can use the same variable.

e) Since XBAS arrays are numbered from O e.g. A$(0) always
use the zero element.

f) Using multiple statements on one line seperatef by a
colon results in faster programs because for each extra line
number XBAS uses five extra bytes. This does cause problems
with readability so it should be assesed whether the extra
speed and less memory is needed for the particular
application in hand.

g) Using A%, i.e. integer variables instead of A, real
variables, saves three bytes of memory. Using % after a
variable name denotes that the variable will contain only
whole numbers, if you need to store numbers containing
fractions then use just the variable name.

Another factor +that should be considered when writing a
program is the overall structure. With short programs this
is not really relevant but for complicated applications some
form of planning and structure will make the task far
easier. It is more than likely that some modifications will
need to be made as a large program progresses, if the
program has some form of structure it will make for an
easier task. Planning can be in the form of a flow chart or
structured diagram or just a list of what happens.

Programming structure could take up a complete book on its
own but just one thought on the subject, try to urite your
next program without using the command GOTO, if you can then
it must have some form of structure. If someone else can
loock at a listing of your program and understand it with
comparative ease then again it is likely to have good
structure.

Typing in listings is an excellent way of learning
programming skills. Everyone makes typing mistakes and it is
in finding and correcting these erorrs that most progress
is made. It is a knouwn fact that after a certain time
viewing a monitor a type of word blindness affects people,
glaring mistakes that would have been noticed when first
starting the programming session are not apparent. The cure
is of course to have a break from the VDU and come back to
the problem with a refreshed mind.

2

ONE LINERS

Trying to write a program in one line really makes you think
and the results can prove most rewarding. The normal line
length for BASIC on the Einstein is 127 characters so use of
the 7?7 insted of PRINT is essential. When +typing in the
following 1 liners use the ? command insted of PRINT at all
times. Remember though, if you list the program then PRINT
will be displayed and may cause the end of the line to be
lost.

1 FORD=0T09:CLS:FORA=65TOS0:PRINTCHR$(A); :NEXT:B=RND(26):
PRINT@B, 1;CHR#(S4) : BEEP20-D:C=KBD: IFC<>B+85THENPRINTD:
ELSENEXT:PRINTD

2 REM HOLD DOWN KEY INDICATED

1 FORT=0TO360STEPS9:X=15%COS(RAD(T)):Y=15%SIN(RAD(T)) :DRAWSS
,968 TO 99+X1,96+Y1, 1:DRAWS9, 96T099+X,96+Y:X1=KX:Y1=Y:NEXT:
GOTO1

2 REM by DAVE HARVEY

1 A=KBD:1FA<>80THEN1:ELSELETB=RND(99):IFB<>STHEN1:ELSEBEEP
:FORC=0TO40:PRINT@C,9; "1 " :B=KBD: IFB=77THENPRINTC : ELSENEXT
:PRINT"SLOWE

2 REM HOLD DOWN Z PRESS M WHEN ARROWS SEEN

1 TCOL15,2:BCOL2:CLS40:R=100:FORA=0TO1000STEPOQ. 1: PLOTR*COS
(A) *SIN(A*0.98)+125,R/1.5%5SIN(A)+100 :NEXTA
2 REH BALL

1 BCOL1:R=80:B=125:C=95:FORL=1TO6STEP.5:CL5:GCOLL+7:FORA=0
TO2*%PISTEPPI/C:X=KE*COS(A)+B:Y=R¥SIN(L*A)+C:DRAWB,CTOX, Y:
NEXT A.L

2 REHM by STEVE COOPER

1 CLS:FORC=0TO020:PRINT@0,0;S:X=RND(20)+10:Z=RND(26)+65:
PRINT@X,C;CHR$(Z) : BEEP25-C: A=KBD: IFA<>ZTHENS=5-1: NEXT:
ELSEPRINT@X,C; " ":NEXT

2 REM PRESS KEY INDICATED

1 CLS:V=.8+RND(1)%3:PRINTV:FORT=0TOZ00%VSTEFV:R=T/V:X=R*CO0S
(T):Y=RkSIN(T):DRAW125,98T0125+X, 98+Y : NEXT : FORP=1T0999:
GOTO1

2 REH by DAVE HARVEY

1 FORF=6144T08192STEP8:C=0:FORG=0TO7:A(G)=VPEEK(F+G):NEXTG:
FORG=7TOOSTEP-1:VPOKE(F+C),A(G) :C=C+1:NEXTG, F:BEEFS
2 REHM TAKES TIME..WAIT FOR BEEFPS

ONE LINERS

CLS:FORC=1TORND(50) : BEEP : NEXTC : FORF=0T099: TCOLF, 1:E=KBD:
PRINT@F,5:;" *;:IFE<>81THENNEXTFELSEPRINT:PRINT"YOU SCORE"
;F:A=INCH:GOTO1

REM PRESS Q WHEN BEEP STOPS ... NO CHEATING

REM GRAPH/SPACE BETWEEN QUOTES

PRINT: A=INCH: IFA<>27THENPRINT" "CHR$(A) "=code("A")":GOTO1
:ELSEINPUTA: IFA<330RA>255THENPRINT"n/a! ":GOTO1:ELSEPRINT"
code("A")="CHR$(A):GOTO1

REM by STEVE COOPER prints code for typed character.
Press escape, then prints character for typed code.

INPUT"ANGLEINC.VALUE";A:B=133:C=100:CLS:PLOT-1,512,386:
MOVEOQ,0:FORI=0TO36000STEPA:J=2%]1:X=J/B*COS(RAD(I)):Y=J/Bx
SIN(RAD(I)):DRAWX,Y:NEXTI:Z=GET:GOTO1

REM by KEVIN LYONS.

REH BBC BASIC.

BCOLO:ORIGIN99,85:A=3:B=6:CLS: FORC=2T015: FORI=0T0250: XX=Y
~SGN(X)*SQR(ABS(B*X-C)) : YY=A-X:X=XX:Y=YY:PLOTX%S, YX5:GCOL
C:NEXTI,C

A=KBD:A=A-48:X=X+(A=5)-(A=8):Y=Y+(A=6)-(A=7) : PLOTX, Y : FORF
=1TO20:NEXT: IFA=1THENCLS:GOTO1:ELSEGOTO1
REH S..LEFT 8..RIGHT 6..DOWN 7..UP 1..CLS

CLS:FORA=0T014914:PLOT 128+ (50+30%SIN(A/39))*xSIN(A/40), 88+
(30450%C0OS(As/41))*%C0OS(A/40) : NEXT

This next routine would very nearly fit on to one line
it has been spaced out for clarity. It requires the use
a joystick and the volume control turned up.

10 TCOL1, 1:CL332

20 PSG8,&31

30 PSG7,&70

40 N=ADC(0Q) :H=BTN(O)

50 PSGO,N/2

80 PSGZ2,Ns4

70 PSG5,N/3

80 PSG6E, 18:PSG9,31:PSG8, 31

90 P5G10,31
100 IF M=1 THENPSG&C, 10:PSG&D,0
110 IF M=0 THENPSG&C,2:PSG&D, 4
120 TCOLN, 1:PRINT@RND(29)+1,RND(21)+1;"x"
130 SPEED240:GOTO 40

but
of

KALEIDESCOPE

Type this program in, run it and =it back and watch your
screen dance to the ever changing patterns and colours.

10 TCOL1,0:CLS32

20 FOR A=50 TO 1 STEP-1

30 FOR B=0 TO 20

40 FOR C=B TO 20:D=INT(B%C/A+(B+C)/A+A)

50 CL=D-15%INT(D-/15):TCOLCL+4,CL

60 PRINT@C,B;"%";@31-C,B;"%";@8C,21-B;"x";831-C,21-B; "x"

70 PRINT@B,C; "x";®31-B,C;"x";8B,21-C;"x";831-B,21-C; "%"
i@31-B,21-C; "x"

80 NEXT C

90 NEXT B

100 NEXT A

LISTING NOTES: :

LINE 50 calculates the TCOL foreground and background
colours.

LINES 60 and 70 do the actual printing to screen, the
position of the print depending on the values of A,B and C.
NOTE: the three loops are 'NESTED’ each successive loop lies
within +the ©previous loop. It is -important when writing
programs which contain more than one loop to ensure that the
loop with the first ’'FOR' statement is also the loop with
the last 'NEXT’ otherwise the program will crash.

ROTATE

The DRAW command is fast enough for small drawings to give
an appearance of a continuously moving picture. The ROTATE
program draws what appears to be a square rotating into the
screen.

10 TCOL15, 1:GCOL15:BCOL1:CLS

20 A=0:B=10:C=40:G0TO070

30 DRAW D,90 TO E,S0 TO E,.G TO D,.G TO D,80

40 DEAW D,90 TO E,90,1 TO E,G,1 TO D,G,1 TO D,90,1
50 A=A+B

60 IF A=C OR A<O THEN B=-B

70 D=90+.5%A:E=D+C-A:G=90+C

80 GOTO 30

LISTING NOTES:

LINES 10 @ 20 initialize variables.

LINE 30 DRAWS the square.

LINE 40 DRANS the same square but this time erasing it,
this is accomplished by adding the third parameter to the
DRAW statement. (see page 87 in the Basic reference manual)
When using the DRAW command the third parameter should not
be added to the first pair of co-ordinates only to the
second and subsequent pairs.

LINES 50-80 perform the modification to the square to give
the impression of rotation.

LINE 90 go back and draw it again.

5

COLLISION DETECTION

When writing BASIC 8ames using sprites, how can you tell
when your intergalactic hyperdrive star cruiser i8 crossing
the path of the dreaded Gurtvoguls stratoblaster? Well the
answer lies in the VDP. Register 8 in the VDP is the
sStatus register. Bit S5 in +the status register is the
coincidence detector bit, this is normaly a 0, but whenever
two sprites cross each other it is set to a 1.

The following basic listing gives one method of detecting
collisions.

5 RST:HAGO:TCOL15, 1:CLS
10 X=10:XX=250
20 SPRITE1L,X,50, 15,65
30 SPRITEZ,XX,50, 15,66
40 A=INP(9):AS$=BIN$(A,8):A$=HID$(AS$,3,1):IF A$="1" THEN
PRINT@20,20; "CROSSING"
S50 IF A$="0" THEN PRINT®820,20;" .
60 IF F=1ANDX>10 THEN X=X-1:XX=XX+1:GOTO 80
70 1F F=OANDX<250 THEN X=X+1:XX=XX-1
80 IF X=250 THEN F=1
90 IF X=10 THEN F=0
100 GOTO 20

LISTING NOTES

LINES 20-30 set up sprites, we are using the A and B from
the normal character set.

LINE 40 this is the line that reads the status register,
A=INP(9) reads the register into A. Next we change it into a
Binary string then we check to see if bit 5 is a 1, bit 5
being the coincidencf bit and the 3rd bit from the left in
the Binary string. If it is a | we print "CROSSING".

LINE 50 just blanks out the "CROSSING" once the sprites have
passed each other. :

LINES 60-90 adjust the positions of the sprites.

LINE 100 go back and do it again.

When using this method it is only possible to detect when

ANY two sprites coincide.

VIS S S S R R A B BB R B

PIN TABLE
4 pinball type game. LEFT = Q RIGHT = P.

10 RST:HAGO:GOSUB260
20 SPRITE1,X,Y,8,161
30 R=PEEK(643286)

40 IF R=8BOANDKX< 1S8THENXX=XX+1:PRINT@XX-1,21;" *

50 IF R=B1ANDXX>12THENXX=XX-1:PRINT@XX+1,21;" "

60 TCOL1.4=PR!HTQXX.21E'h':TCDL15.4=REH GRAFH H

70 IFXFLAG=0OANDPOINT (X-1,Y-4)=1THENGOSUB180:
IFRND(2)=1THENX=X+8:XFLAG=1

80 1FXFLAG=1&NDPOINT(K+8,Y—4)=1THEHGOSUBIBO=IFRND(Z):l
THENX=X-8: XFLAG=0

90 IFYFLAG:OANDPOINT(X,Y—S):lTHENGOSUBlBO:IFRND(Z):I
THENY=Y+8:YFLAG=1

100 IFYFLAG:I&NDPOINT(X?d.Y+1)=1THENGOSU3180:IFRND(Z):I
THENY=Y-8:YFLAG=0

110 IFKFLAG:OTHENIFPOINT[X—I.Y*élxOTHENK=K—8:ELSEXFLAG=1

120 PRINT@8,0:SC

130 lFXFLAG:1THENIFP01NT(X+8.Y*4J:OTHENX=K+8:ELSEKFLAG=0

140 IFYFLAG=OTHENIFPOINT(X, Y-S)=OTHENY=Y-8:ELSEYFLAG=1

150]FYFLAG:!THENIFPOINT(X+4,Y+1)=0THENY=Y+8=ELSEYFLAG=O

180 IFY=<20THENGOSUB200

170 GOTO20

180 PSGO,RND(150)+35:PSG13,0:5C=5C+2

190 RETURN

200 LIUES=LIVES—1:PRINTBZS.O;LIVES:FORF:IOTOI12:PSGO,F:
PSG13,0:NEXTF:Y=(RND(10)+1)%8+32:IF LIVES<>OTHENYFLAG=1:
RETURN

210 GOSUB250

220 SPRITEOFF1:

230 PRINT@0,21:" DO YOU WISH TO PLAY AGAIN ";:A=INCH:IF
A< >BSTHENSTOP

240 RUN

250 FDRF=10T090=FORG=90T010=PSGO,F:PSGIS,0=PSGO.G=PSG13.0
:NEXTG, F:RETURN

260 FOR F=0TO3:READN$:SHAPE161+F,N$:NEXT

270 Dth”00183C7ETESCIBOO'.‘FFSI&5A5&5A581FF'.‘8080808080
808080", " 183C66DBDBE6E3C18"

280 BCOL4:CLS32:FORF=8T022:PRINTEF, 1;° " : NEXT:FORF=1T021:
PRINT@8,F; " ";822,F;" * : NEXT: FORF=8T022:PRINT@F,21:;" *
:NEXT:REM GRAPH+SPACE BETWEEN ALL QUOTES ON LINE 280

290 PRINT@12,21:" T 300 PRINT®11,4:"" i

310 PRINT@13,8;" "":REM ITALIC QUOTES ARE GRAPH+SHIFT+2

320 PRINT@11,8:"" "e

330 PRINT@11,10;3" ¥ s
340 PRINTE®11,12:" " =Sl
350 PRINT@11, 143" ae

360 PRINTE®11,17;:"" g

370 TCOL15,4:PRINT@14,21;"h":REH GRAPH+H

380 XX=14:X=180:Y=96:LIVES=3

390 PSG7,840:PSG8,31:PSG12,6

400 PRINT®1,0;"SCORE: LIVES:*;LIVES
410 RETURN

CIPHERS

Since the dawn of mankind, man has used codes and ciphers in
an attempt to prevent his enemies from reading his messages.
Probably the simplest method of encryption is by the use of
a displaced alphabet. This is simply a matter of, for
instance displacing the letters of the alphabet by say 3
therefore a B’ would be encrypted as an 'E’. So for a
message that ran 'VHH BEX VRRQ' as long as we knew the
displacement, it would be a simple matter to work out that
it should read 'SEE YOU SOON'. Of course there are many
other forms of encryption, we could substitute graphics or
numerals for the letters in our message, however the
important point is that the receiver of +the encrypted
message must know the key used in the encryption.

The computer of course is an ideal medium for cipher
encryption and for . the breaking of ciphers. If you have
used PSW(password) in Basic to protect Your programs fron
prying eyes you will know the nesseccity of knowing the code
used in encrypting a message, since if you forget your
password for a particular program you'll have a hard time
trying to use that progran.

Below we have a program by Robert Whitrow, in this program a
key word is entered and this key word is used to encrypt the
message you enter. Messages encrypted using the program may
also be decrypted by the program as long as the key word
used is known.

S CLsS

20 INPUT "ENTER CODEWORD : ";Ws$

30 LW=LEN(WS$)

40 DIH W(LW)

50 FOR I=1 TO LW:W(I)=ASC (MID$ (W$,I,1))-65:NEXT I
60 REM STORE NUMBER EQUIV. OF LETTERS IN CODEWORD IN

ARRAY W()

70 REHM

80 INPUT "ENCRYPT OR DECRYPT (E/D): ";E$

90 E=1:IF E$="D" THEN E=-1

100 PRINT "ENTER PLAINTEXT OR CIPHERTEXT,LETTERS ONLY:"
110 INPUT Cs3

120 Ps=""

130 FOR I=1 TO LEN(C$):X=ASC (MID$ (C$,I,1))-65

140 Y=(I-1)-LWXINT (I-1)/LW

150 X=X+ExW(Y+1)

160 IF X>25 THEN X=X-26

170 IF X=<O0 THENX=X+26:REH 180 AND 190 SET X=X HOD 26
180 P$=P$+CHR$(X+865)

190 NEXT I
200 PRINT:PRINT:INPUT “OUTPUT TO SCREEN OR PRINTER

(S/P)";:08%

210 1F 0%="P" OR Os="p" THEN PRINTE£1
220 PRINT P$:REM P$ IS CIPHERTEXT OR PLAINTEXT

[

[

[l

[l

[

CIPHERS

As you will see if you run this program and encrypt a
message you Will get quite unreadable text. This can only
be deciphered if ran through the same program and only then
if the codeword is known. However a lot of enjoyment can be
had by trying to work out what a cipher message says
without using the decoding potion of +the progran and
without knowing the codeword. To do this you need to know a
little about the occurance of letters in English words.

Here is a table that may help.

Frequency Frequency
Letter per 1000 words Letter per 1000 words
E 591 H 114
T 473 u 111
A 368 G 90
0 360 Y 89
N 320 P 89
R 308 W 68
I 286 B 65
=] 275 v 41
H 237 K 19
D 171 X =
L 153 J 6
F 132 Q 5
C 124 Z 3

As one may expect E is the most commonly used letter in the
English language. A few more useful facts would go a long
way to helping us decipher an encoded message. The most
common double letters are, in order, LL, EE ,S58 ,00, TT,
FF, RR, NN, PP, CC, HM, GG. The most common two letter
combinations are; TH, HE, AN, RE, ER, IN, ON, AT, ND, ST,
ES, EN, OF, TE.

The most common three letter combinations are; THE,
ING, CON, ENT, ERE, ERS, EVE, FOR, HER, TED, TER, TIO, VER.
Finally it is worth noting that 50% of English words end
in E, S, D or T and more +than 50% of all English words
begin with T, A, O, S or W.

RISING SUN

The music capabalities of the EINSTEIN have never been fully

exploited. This short program shows just a little of what
the PSG is capable of.

10 REM RSUN

20 VOICE 0,31, 10,2,60,5

30 B$= "R5 A7 AS C7 FS bB7 bBS bB7 bB5 A7 AS A7 C5 E9 Al
Al A7 A5 A7 F5 -D5 -G5 -G5 -G5 —-F7 -FS -A7 —A5 -E7
-E5 -A7 R"

40 REM SPACE

S50 C®= "ES F7 FS5 A7 AS D7 G5 F7 F5 F7 F5 F7 F5 #C9 El1 E1
F7 D5 C7 C5 -bB5 -bB5 —bB5 —-bBS —-bB7 -bB5 —~F7 -F5
-#C7 -#C5 -F7 R*

60 REH SPACE

70 A$= "-AS D7 ES F7 AS G7 D5 D7 +D5 +D7 +DS +C7 AS A9
+D1 +D1 +D7 ES F7 AS G5 D5 DS D5 D7 D5 D7 DS #C7 #CS
D7 R*

80 TEMPO 5

90 MUSIC "VO"+A$,B$,C$

100 GOTO 90

SOHMBRERO

Plotting to the screen can produce some interesting effects.
This program plots a mathematical function that gives a
'3-D’ image. The program is short but be prepared for a long
wait once run, it takes around 12 minutes +to conmnplete
plotting.

10 TCOL1, 15:BCOL15:GC0OL4:CL5332
100 FOR X=40 TO 215
110 B=899:T=0
120 FORY=16T0144S5STEP4
130 R=SQR((X-127)%(X-127)+(Y-80)%(Y-80)) /15
140 Z=INT(Y+90%EXP(-R/3)*COS(R))
150 IFZ<BORZ>TTHENFLOTX,Z
160 IFZ<BTHENB=Z
170 IFZ>TTHENT=2Z
180 NEXTY
190 NEXTX

10

BIGPRINT

There now follows several programs for printing large
characters. The first of these prints a vertically scrolling
message to the screen. The character set is held in VRAH
from address 6144. Calculating the address of where a
particular character is stored is simply a matter of taking
the characters ASCII number, multiplying this by 8, (each
character is made up of 8 bytes), them adding this figure to
the start address 6144. Thus *E® who's ASCII value is 69 is
stored in VRAM from; 69%8 = 552 + 6144 = 6696.

100 PRINT'ENTER HESSAGE":INPUT"®*;:Hs

110 FORA=1TOLEN(H3$)

120 G$=HID$(H$,A, 1)

130 G=ASC(G$):G=G*xB+6144

140 FORC=0TO7:X(C)=VPEEK(G+C):NEXTC

150 FORF=1TO8:

160 B=X(F):A$=BIN$(B,8):

170 FORC=1TO8:PRINTTAB(15):G#=HID®(As,C,1):IFG#="1"THEN
PRINT " ";:ELSEPRINT" *;:

180 REM GRAPH/SPACE BETWEEN QUOTES IN LINE 170

190 NEXTC

200 PRINT:NEXTF:PRINT

210 NEXTA

SIDE PRINT

This program is similar to BIGFRINT oaly this time it
outputs a message to the priater, sidesays oz, thus Yyou can
produce a message as tall as the prister paper is wide and
as long as you want.

100 PRINT"ENTER MESSAGE":INFUT"":HSGS

110 PRINT*"WIDTH®": INFUT*";WIDs

115 W=VAL(WIDs)

120 FORA=1TOLEN(HSGS)

130 L#=MID$(HSGs,.A, 1)

140 L=ASC(L$):L=LxB+5144

160 FORO=0TO7:X(8-0)=VPEEK(L+0):NEXTO

200 N=128

210 FORO=0TO7

220 FORE=1TOW

230 FORF=1TO08:IFK(F)<NTHENZ280

240 PRINT#1:PRINTTAB(4xF-4):;" *; :IFE=WTHENX(F)=X(F)-N
250 REM GRAPH/SPACE BETWEEN QUOTES IN LINE 240
260 NEXTF:PRINT

270 NEXTE:N=Ns2

280 NEXTO

290 NEXTA

"

DOUBLE HEIGHT

Double Height by David Hambly produces double height
characters on the screen by pokeing the VRAH directly. The
process from BASIC 1is fairly slow but does produce an
interesting effect.

10 CLS40

20 INPUT"ENTER A MESSAGE UPTO 28 CHARACTERS";A$
30 Z=5

40 FOR A=1 TO LEN(AS)

S50 D=8176:B=0

60 B$=HID$(AS$,A, 1)

70 C=(ASC(B$)-32)%8+6400+B

80 E=VPEEKI(C)

90 VPOKE D,E:VPOKE D+1,E

100 PRINT @Z, 10;CHR$(254):PRINT @Z, 11;CHR$(255)
110 B=B+1
120 D=D+2:1F D>8191 THEN 130:ELSE 70
130 Z=Z+1:NEXT A
140 END

DOUBLE HEIGHT 2

This version of Double Height by Chris Giles is a little
longer a near instant effect. Your own program may be
inserted to take advantage of the Double Height subroutine.

10 REM Subroutine for DOUBLE HEIGHT characters
20 REM
30 REH
40 REH HAIN PROGRAM GOES HERE
S0 REHM
60 REHM
70 BCOL1:TCOLE:PRINT CHR$(20):CLS:REH Set background
and text colours.
80 REM Cursor off and clear screen.
90 REH
100 REH
110 REM Before calling the subroutine, WD$ must be
declared as the string
120 REM to be printed in double height characters.
130 REM X% and Y% must be set to the horizontal and
vertical text cursor
140 REM positions where the string is to be printed.
150 REH
160 REH
170 WD$="U.K. EINSTEIN USER GROUP":XX%X=6:Y%=12:G0SUB 250
180 REHM
190 REHM
200 PRINT CHR$(30);:END:REH Cursor home, then end.
210 REM
220 REM
230 REH

12

240
250
260

270
280

290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

460

DOUBLE HEIGHT 2

REM THE SUBROUTINE BEGINS HERE

PRINT@X%,Y%,"";:REM Position cursor.
FORJ%=1TOLEN(WD$) : REM For each character in the
string,

1%=ASC(HID$(WD$,J%, 1)) :REH determine the ASCII value.
A%X=1%%B8+6144:REH Convert ASCII value to text pattern
table address

B$=HEX$ (VPEEK(AX),2) :C$=HEX$(VPEEK(A%+1),2) :D$=HEX$
(VPEEK(A %+2),2):E$ =HEX$(VPEEK(AX+3),2)

REH Assign first four bytes of text pattern to four
strings, as hex numbers

REH

SHAPE128,B$+B$+C3+C$+D$+D3$+E$+E$

REM Redefine free text pattern as upper half of
double height

REH character.

PRINT CHR#$(128);CHR$(8);:CHR$(10);

REM Print redefined character, then backspace and
linefeed.
B$=HEX$(VPEEK(A%+4),2) :C$=HEX$ (VPEEK(A%+5),2) :D%=
HEX$(VPEEK (A%+8),2): E$=HEX$(VPEEK(AX%+7),2)

REM Assign second four bytes of text pattern toc four
strings, as hexX numbers

REH

SHAPE128,B$+B$+C$+C$+D$+DS+ES+E$

REH Redefine free text pattern as lower half of
double height character

REH

PRINT CHR$(128);:CHR$(11);

REH Print redefined character, then ‘cursor up’.
NEXT:REM Next character in the string. If last one
printed

RETURN:REM return to main program.

13

BOHMBER

Bomb the wall before it squashes you. NOTE: Lines 50, 70,
1020, 10020 and 10050 where numbers appear between quotes,

press

2080

2090
2100
2110
2120
2130
2140
2150
10000
10010

10020
10030
10040
10050

10060

GRAPH/SHIFT and the number indicated all together.

CL332

SPEED248:G0SUB 10000

SPEED255

IFK=30THENX=0:PRINT@29,2;" “:C=C+1:IFC=2THENPRINT@
2,23;"": IFB>STHENB=B-1
PRINT@X,2;"12":PSG12,4:PSG13,4: PONER=POWER+1

K=KBD: IFK<>OANDPOWER>4THENGOSUB 1000
CH$=MID$(SCRN$(2),X+3,1): IFCH$="3"THENGOT02000
PRINT@12,0; "SCORE: ";SC

IFC=2THENC=0

X=X+1:PRINT@X-1,2;" "

GOTO40

REM *%x FIRE *xxx
FORF=3TOB+RND(8) : TCOL5, 3:CH$=HID$ (SCRN$(F),X+1, 1) :IF
CH$="3"THEN SC=5C+5:PRINT@12,0; "SCORE: ";5C
PRINT@X,F;"4":TCOL15,3:PSGO,Fx10:PSG13,0: PRINT@X,F;" *
NEXTF

IFSC=1680THENFORF=15TO1STEP-1: BCOLF:PSGO,Fx16:PSG13,0:
PRINT@O,F;" YOU HAVE DEFEATED THE WALL ":NEXT:A=INCH
:RUN

POWER=0:RETURN

REH *xx END x¥x

B$="YOU HAVE BEEN DEFEATED ":C$="D0O YOU WISH TO PLAY
AGAIN? o
FORF=31TO1STEP-1:PSGO,Fx7:P568,31:P5G12, 12:PSG7, &78:
PSG13,0

PRINT@F, 16; LEFT$(B$, 32-F)

NEXTF

SPEED100:FOR F=0T0S500:NEXTF:SPEED255:TCOL1,3
FORF=31TO1STEP-1:PSGO, FX7:PSG8,31:PSG12, 12:PSG7,&78:
PSG13,0

PRINT@1, 14; "THERE WERE"; (1680-5C)/5; "BRICKS LEFT

FORF=31TOISTEP-1:PSGO,Fx7:PSG8,31:P5G12, 12: P5G7,878:
PSG13,0

PRINT@F, 16;:LEFT$(C$,32-F)

NEXTF

POKE&013D,0

K=KBD

IFK=0THEN2120

IF K=89THENRUN

STOP

FORF=0TO3:READN$:SHAPE161+F, N$:NEXTF
DATA"000103E66C3D1309", "00B0OCOB736BCC8BI0", "FF8181818
18181FF", "555 5363 E3E3E1C08"
A$="3333333333333333333333333333"
TCOL15,3:BCOL3:GCOL3:CLS32:B=15

PSGB,31:PSG12, 12:PSG7,78
FORF=11T022:FORG=2T029:TCOL15,F-10:PRINT@G,F;"3":
PSGO,F*4:P3G2,G: PSG1 3,0:NEXTG,F:TCOL15,3

RETURN

14

DRAWING WITH THE EINSTEIN

There are several commercial drawing programs available for
your EINSTEIN, these range from PICPEN, given free on your
master disc, to the more comprehensive programs such as
SCREENPLUS and GRAPHDRAW. The following two programs are
very basic but do provide ideas which you may care to expand
on.

JOY DRAW

One of the many competitions held by the U.K.E.U.G. was to
write a draw program in just 10 lines. JOY DEA¥ by Stuart
Marshall won the competition, this progras alleows you to
draw your picture using a joystick and dump it to a
printer, the graphic dump program is required to be in
memory for dumping to printer, instructions om how to add
this facility are given in the printer graphics article
towards the rear of the book.

1 CLEAR&E260:CLS5:PRINT®@0,0:;" ° JOYSTICK FOER UP/DOWN,LEFT/
RIGHT":PRINT@0, 2; "FIRE BUTTON TO ERASE LIKE":FEINTS80,4
3*C. ... TO ERASE"

2 PRINT@O,6:" P .. FOR PRINTEE DUNFP(WILL ONLY WORK

IF DUMP INSTALLED IN DOS)":PRINTE&OC, 10:°" SPACE

BAR TO START"

5=KBD: IFS=32THEN GOTO4:ELSEGOTO3

CLS32:SHAFE140, "EOCOA0S008040000" :GCOL15,0:BCOL4:

X=256/2:Y= 192/2:A=1/ 300

X%=ADC(0)-112:¥%=(ADC(1)-112)x. 75 E=K+KXxA-V=Y+YXxA:

SPRITEC ,X,Y,1, 140

IFX<OTHENX=0:ELSEIFX>255THENK=255

IFY<4THENY=4:ELSEIFY> 1S92THENY=1392

IFBTN(0)=1THENPLOTX, Y: ELSEIFBTN(O)=0THEN UNPLOTX,Y

S=KBD: IFS=80THENCALL&EZ70

IFS=67THENGOTO4 : ELSEGOTOS

B W

Cpowam 0

(=

15

WIRE DRAW

This program, was first published in ©Popular Computing
Weekly, here modified by Peter Leadbeater. It illustrates how
to make simple wire drawings that can be saved to disc,
re-called and modified as required. There is scope for
further alterations to the program. i.e. rotation and
scaling of the drawings would be nice.

10 RST:TCOL15, 1:BCOL1:GCOL15,1
20 GOSUB370:G0SUBS530
30 IOMS5,0:TCOL1, 15:PRINT@0,0,CHR$(20) "HOVE CURSOR X";
80,1 ;H$;@18,0,"SX=";X;@25,0, "SY=":Y:@18, 1, "FX=";XX;3
825,1, "FY=":YY
40 SPRITEO,X-4,Y+4, 15,130
50 PRINT@17, 1:A=INCH
60 1FA=4THENX=X+SP:IFX=>254THENX=254
70 IFA=8THENX=X-SP:IFX<=1 THENX=1
80 IFA=10THENY=Y-SP:IFY<=1 THENY=1
90 IFA=11THENY=Y+SP:IFY=>174THENY=174
100 IFA=72 ORA=104THENGOSUB380
110 IFA<>13THEN30
120 TCOL1, 15:PRINT80,0,CHR$(20) "MOVE CURSOR +";B0, 1:H$;
@18,0, "SX=":;X;825,0, "SY=";Y;@18, 1, "FX="3XX;825, 1,
*FY=":YY
130 SPRITE1, XX-4,YY+4, 15, 131
140 PRINT@17,1:A=INCH
150 IFA=4THENXX=XX+SP:1FXX=>254THENXX=254
160 IFA=8THENXX=XX-SP:IFXX<=1 THENXX=1
170 IFA=10THENYY=YY-SP:IFYY<=1 THENYY=1
180 IFA=11THENYY=YY+SP:IFYY=>174THENYY=174
190 IFA=72 ORA=104THENGOSUB380
200 1FA<>13THEN120
210 TCOL15, 1:PRINT®0,0;*SELECT OPERATION";@0, 1, "USE
COMMAND KEYS":TCOL1, 15:PRINT®17, 1;:A=INCH: IFA=>97
THENA=A-32
220 IFA=>4SANDA<=57THENSF=A-48:G0TO030
230 IFA=67THENX=XX:Y=YY
240 IFA=68THENDRAWX, YTOXX,YY:PX(C)=X:PX(C+1)=Y:PK(C+2)=XX
:PX(C+ 3)=YY:C=C+4
250 IFA=69THENDRAWX, YTOXX,YY, 1:C=C-4
260 IFA=72THENGOSUB380
270 IFA=76THENTCOL15, 1:RUN540
280 I1FA=79THENSPRITEOFF:A=INCH
290 IFA=83THENGOSUBE70
300 IFA=84THENTCOL1S, 1:RUN
310 IFA=88THENSPRITEOFF:TCOL15, 1:PRINTCHR$(17):CLS40:END
320 GOTO30
330 B=0:DOKE&8000,C:FORF=8002T0&8002+C—1:POKEF,PX(B):
B=B+1:NEXT:RETURN
340 IFPX(1)=0THENRETURN
350 C=0:N=DEEK(&8000) : FORA=A8002T0&B002+N-1:PX(C)=
PEEK(A) :C=C+1 :NEXT
360 FORA=0TOC-1STEP4:DRAWPX(A),PX(A+1)TOPX(A+2),PX(A+3):
NEXT: RETURN

16

370
380
390
400

410
420
430

440

450

460

480
430
500
510
520
530

540

550
580
570

580
590
800

610

620
830

640

850
660
870
680
690
700

710
720
730

WIRE DRAW

DIHPX(1000):C=0

TCOL15, 1:SPRITEOFF

IFA=720RA=104THENBEEP : GOSUB330

CLS32:PRINT@4,0, "GRAPHIC LINE-DRAW UTILITY";@4,1,
HUL$("-",25) ;@5,4,"To Position Cursors Use"
PRINT@5,5, "The Cursor Control Keys®i@6,8, "COMHAND
ACTION";®24,8, "KEY"
PRINT@G,9,HUL$("-", 14);824,9, "---";86, 10, "Cursor
Speed":824, 10, "1-8"

PRINT@S, 12, "Cursor Off":825,12,"0";86, 13, "Cursor
Overlay";®25, 13, "C";@6, 14, "Draw from x to +°
PRINT@25, 14, "D";@6, 15, "Erase from X toc +":825,15,"E";
@8, 16, "Load Drawing";@25, 16, "L";86, 17, "Save Drawing";
ass, 17, "5

PRINT@S, 18, "Scratch & Re-start®;825,18,"T":@6, 18,
"Return to DOS":@25, 19, "X";@2,22, "(Press SPACE-BAR to
continue)"

K=KBD:IF K<>32THEN 460

IFA=720RA=104 THEN:GOSUBS30:G0SUB340

X=127:Y=100: XX=X:YY=Y:8P=1

H®#="(H for HELP) .

SHAPE 130, "8142241818244281"

SHAPE 131, "0808087F08080800"

RETURN

TCOL15, 1:BCOL1:CLS32:TCOL1, 15:PRINTSPC(64):TCOL15,1
:RETURN
RST:CLEAR&S000: PRINTCHR$(20) :DINPX(1000) :GOSUB480:
CLS32:TCOL1, 15: PRINTSPC(84)

ON ERR GOTOB30

PRINT®0, 0, "PRESS <ENTER> FOR FILE DIRECTORY"
PRINT@Q, 1,CHR$(17) "LOAD FILE - NAHE 7";@19,1;:
INPUT"";F$:TCOL15,1

IF F$="NO"THENB20

IF LEN(F$)>8BTHENF$=LEFT$(F%$,8)
LOADF$+".0BJ" : N=DEEK (&8000) : FOR A=&8002T0&8002+N-1 -
sPX(C)=PEEK(A):C=C+1:NEXT
FORA=OTOC-1STEP4:DRANPX(A) ,PX(A+1)TOPX(A+2) ,PX(A+3)
:NEXT:BEEP

OFF ERR: TCOL1, 15:PRINT®0,0,SPC(64):GOTO30
CLS40:PRINT@4,0, "THE FOLLOWING FILES ARE AVAILABLE";
@12,2, "PLEASE SELECT ONE":-0,4;
DIR"%.0BJ":PRINT@4,20,"(File Name 'NO® for cursor
control)";@8,22, "Press SPACE BAR to continue’
A=KBD:IF A<>32THEN 650

GOTO0540

REH

GOSUB330

TCOL1, 15:PRINT@0,0,CHR$(17) "SAVE DRAWING BY "
PRINT®O, 1, "NAME ? ";@7,1;:INPUT"":F$:TCOL15,1:IF
F$="" THEN 690

IF F#="NO"THEN RETURN

IF LEN(F$)>8THENF$=LEFT$(F$,8)

SAVE F$+".0BJ",&8000,88000+C+2:RUN

17

An old

BIORYTHHM

favorite with some interesting additions.

LISTING NOTES:

LINES 240-260 - Before the words Physical, Emotional and
Intellectual type GRAPH/3 twuice.

LINE 280 - GRAPH/LEFT CURSOR and GRAPH/RIGHT CURSOR

10
20
30
40
50
80
70

80

90
100
110
120
130
140
150
160

170
180
190
200
210
220
230
240
250
280
270
280
290
300
310
320
330
340
350
360
370
380

400
410
420
430
440

REHN* kskkokakokRokok Aok ok okokok Rk kR ok ok k
REM*® BIORYTHM FOR EINSTEIN *

REM* BY *
REHx PETER P. HEFFERNAN x
REHXKRRRKKRIKRKAK KA KRR ARk ok Kok

RST:0RIGIN1,0:MAG2:BCOL4

SHAPE 128, "808080808080808080808080808080800000000000
0000000000000000000000 "
GOSUB710:CLS40:P=-8:GCOL15:BCOL4:D=0:2=23:
TCOL15,6:W=W-0

PRINT@0,2;N$" will be";T;"days old today:"
PRINT@0,3:;" and is a"]

REH

PRINT®@O,6;"it is5";W;"days to XMAS"
TCOL1S, 12

PRINTQO,S5:D{1); "/ "H(1)s*7"Y11)" "
GOSUB1220

IFW=0THENPRINT@0,6; "x* MERRY CHRISTHAS %":TCOL15,8:
PRINTH20.6;"

REH

REH

GOSUB1410

TCOL14,4

DRAW1,B85T0248,65

GCOL15

DEF FN A(X)=SIN(RAD(3B0%x(X/Z)))%80

TCOL15, 13:PRINT®25,4; "33 Physical 4

TCOL3, 13:PRINT@825,5; "33 Emotional 2

TCOL11, 13:PRINT®25,6;"33 Intellectual"

TCOL15,4

PRINT@0,0 ;"to move day-line use °'C’forand 'B'for"
PRINT@0, 1; " Press 'space’'to EXIT:'enter’ to re-run"
FORX=T-12 TOT+20STEP. 125

P=P+1

LETY=FNA(X)

PLOTP+8, Y+65

NEXTX

D=D+1:P=—8:X=96

IFD=1THENZ=28:GCOL3:G0T0230
IFD=2THENZ=33:GCOL11:G0T0230

FORJ=63T0867

FORI=0TO248 STEFS8

PLOT 1I,J :NEXTI

NEXTJ

TCOL15, 12

A3=KBD$

IFA$=CHR#$(13) THENRST : RUN

18

BIORYTHH

450 1FA$=CHR$(32)THENRST:END

460 1FA$="B"THENX=X+8:G05UB1140

470 IFA$="C"THENX=X-8:GOSUB1050

480 IFX<OTHENX=0

490 IFX>248THENX=248

500 SPRITE4,X ,100,15,128

510 SPRITE1,X ,84 ,15,128

520 SPRITE2,X ,68 ,15,128

530 SPRITE7,X ,36 ,15,128

540 SPRITE8S,X ,20 ,15,128

550 SPRITES,X ,116,15,128

560 SPRITE3,X ,52 ,15,128

570 SPRITES,X ,132,15,128

580 PRINT®O, 5‘D(1);“/‘H[l)“/'Y{l}' "

590 TCOL15,6

600 PRINT@O,Z2;:N$" will be";T;"days old today;i"

610 PRINT®O,B;"it is";W;"days to XHAS"

620 TCOLS, 15

630 IFD(1)=LANDHM(1)=HTHENPRINT@O, 7:; "HAPPY BIRTHDAY "iN$;"
YOU ARE":;Y(1)-R;"TODAY"

640 TCOL15,0

650 IFD(1)<>LORM(1)<>MTHENPRINT®O,7;"

L

660 TCOLS, 15

670 IFW=OTHENPRINT@0,6; "% MERRY CHRISTHAS x":TCOL
15,6:PRINT@20,65" "

680 TCOL15,6

680 GOSUB1220

700 GOTO430

710 POKE&D000,00,31,28

720 POKE&D003,31,30,31,30,31,31,31,31,30,31

730 CLS

740 PRINT@2,4;"ENTER YOUR NAME®;

750 INPUTN$

760 IFLEN(N$)>8THENBEEP:GOTO730

770 PRINT@2, 10; "YEAR CHART REQD.FORie(1973)%;

780 INPUTY(1)

790 GOSUB1830

800 1FY(1)<15820RY(1)>3000THENBEEP:GOTO730

810 PRINT@Z, 11; "MONTH CHART FOR(1-12)...... “3

820 INPUTH(1)

830 IFM(1)<10RM(1)>12THENBEEP:GOTO730

840 IF Y(1)MOD4>OTHENPOKE&DOOZ,28

850 PRINT&2, 12; "DATE CHART REQD.FOR........ 23

860 INPUTD(1)

870 IFD(1)<10RD(1)>31THENBEEP:GOTO730

880 IFY(1)HOD4=OANDHM(1)=2ANDD(1)>28THENBEEF:GOTO730

890 IFH(1)>2THENGOSUB1670

900 IFH(1)=10RM(1)=2THENGOSUB1580

910 PRINT@2, 16; "YEAR OF BIRTH ie(1955)....."

920 INPUTY:R=Y

930 IFY>Y(1)THENBEEP:GOTO730

940 IFY< 15820RY>3000THENBEEP : GOTO730

950 PRINT®2, 17:"MONTH OF BIRTH(1-12)....... "3

19

960
970
980
9390
1000
1010
1020
1030
1040
1050
1060
1070
1080

1080
1100
1110
1120
1130
1140
1150
1160
1170

1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1280
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400
1410
1420
1430
1440
1450
1460
1470

BIORYTHHM

INPUTH:K=H

IFH< 10RH> 12THENBEEP : GOT0730

TRINIMECIBTEDRYE. ... o P by "i
INPUTD:L=D

IFD< 10RD>3 1THENBEEP :GOT0O730
IFYHOD4=0ANDM=2ANDD>28THENBEEP :GOT0730
IFHM>2THENGOSUB 1840

1FH=10RH=2THENGOSUB 1760

RETURN

K=PEEK (&DOOO+H(1))

IFX>2480RX<OTHENRETURN

D(1)=D(1)-1
IFD(1)<1ANDH(1)=1THEND(1)=31:Y(1)=Y(1)-1:H(1)=12:
GOTO1100

IFD(1)<1THEND(1)=((PEEK(&DOOO+(HM(1)-1)))):H(1)=H(1)-1
T=T-1:F=F-1:W=W+1:IF(Y(1)+1)HOD4=0ANDW=366THENN=0
IF(Y(1)+1)HOD4>OANDW=365THENW=0

GOsSuUB1220

RETURN

K=PEEK (&DO0O+H (1))

IFX>2480RX<OTHENRETURN

D(1)=D(1)+1

IFD(1)>31ANDH(1)=12THEND(1)=1:Y(1)=Y(1)+1:H(1)=1:
GOTO1190
IFD(1)>KTHEND(1)=1:M(1)=H(1)+1:IFM(1)=13THENH(1)=1
T=T+1:F=F+1:W=W-1:IFW<1THENGOSUB1970

GOSUB1220

RETURN

REH

TCOL15, 12

IFF=8THENF=1

IFF=0THENF=7
ONFGOTO1270, 1280, 1310, 1330, 1350, 1370, 1390

PRINT@1, 4; "Sunday -

RETURN

PRINT®1, 4; "Monday >
RETURN

PRINT@1,4; "Tuesday "

RETURN

PRINT®@1,4; "Wednesday"

RETURN

PRINT@1,4; "Thursday "
RETURN

PRINT@1,4;"Friday -
RETURN

PRINT®1,4; "Saturday "

RETURN

REH

TCOL11,6
ONF(3)GOTO1440, 1460, 1480, 1500, 1520, 1540, 1560
PRINT@10, 3; "’'Sundays child'"
RETURN

PRINT@10,3; " *Mondays child'"
RETURN

20

BIORYTHM

1480 PRINT@10,3;"*'Tuesdays child'"
1480 RETURN

1500 PRINT@10,3;"'Wednesdays child"'"
1510 RETURN

1520 PRINT@10,3;"’Thursdays child'"
1530 RETURN

1540 PRINT®10,3;"'Fridays child""
1550 RETURN

1560 PRINT@10,3;"'Saturdays child"'"
1570 RETURN

1580 REHM NO.OF DAYS

1590 A=385%Y(1)+D(1)

1600 A=A+(31%x(M(1)-1))

1610 A=A+INT((Y(1)-1)/4)

1620 A=A-INT(.75%(INT(((Y(1)-1)7100)+1))})
1630 0=A

1840 Q=A+(INT(-A/7)X%7)

1650 F=Q+7

1660 RETURN

1670 A=365%Y(1)+D(1)

1680 A=A+(31%(M(1)-1))

1690 A=A-INT((.4%xH(1))+2.3)

1700 A=A+INT(Y(1)/4)

1710 A=A-INT(.7S*¥(INT(Y(1)7100)+1))}
1720 0=A

1730 U=A+(INT(-A/7)%7)

1740 F=U+7

1750 RETURN

1760 A=385%Y+D

1770 A=A+(31%(H-1))

1780 A=A+INT((Y-1)/4)

1790 A=A-INT(.7Sk(INT(((Y-1)7100)+1)))
1800 Q=A+(INT(-A/7)%7)

1810 T=0-A

1820 F(3)=Q+7

1830 RETURN

1840 A=3B5%Y+D

1850 A=A+(31k(H-1))

1860 A=A-INT((.4%M)+2.3)

1870 A=A+INT(Y/4)

1880 A=A-INT(.75%(INT(Y/100)+1)})
1890 U=A+(INT(-A/7)%7)

1900 T=0-A

1810 F(3)=U+7

1820 RETURN

1930 H(1)=12:D(1)=25

1940 GOSUB1670

1950 W=A

1960 RETURN

1970 IFW=0THENPRINT@O,6; "xx MERRY CHRISTHAS x*
1980 IF(Y(1)+1)HMOD4=0THENJ=366

1980 IF(Y(1)+1)MOD4>0THENJ=365
2000 IFW<OTHENW=J+W

2010 RETURN

21

A DAY AT THE RACES

If we use sprites in a Basic program we get smooth movement,
however the more sprites we have to move the slower the
program runs. In 'A Day At The Races' there are 6 horses
which have to moved at once, each horse having tuo shapes to
give the appearance of animation. There are also the furlong
markers to be moved and so, to ensure a more realistic
effect, machine code is employed.

Before entering the game program, the machine code must be
entered, so type in the following loader program having
first put a disc, with space for the object file which will
be produced, into the current drive. As there are a lot of
data statements, a quick way of entering them is to type in
the first data line, (line 50), then once entered, move the
cursor to alter this line number to the subsequent line
numbers of the DATA statements, (60-850). Now 1list the
program and you should have lines 50-850 containing the sanme
DATA. Now move the cursor and change the value of the DATA
Statements in lines 60-850 +to the values as printed,
remenber to press enter after each line is completed.

10 CLEAR &B000

15 FOR F=&8000 TO &8282

20 READ A:POKE F,A

25 -NEXT -F

30 SAVE "HORSE.OBJ",&B000, 88282

40 END

50 DATA &3E,&47,&F6,&40,44F,406,407,4CD
60 DATA &38,882,801,&1F,808,4CD, 438,882
70 DATA &01,&1F,&09,4CD,&38,482,401,4&1F
80 DATA 80A,&CD,838,&82,801,801,80C,&CD
90 DATA &38,&82,&C3,467,481,%21,464,480
100 DATA &01,880,802,47E,&D3, 809,879, 8D3
110 DATA &09,&0C,&23,&10,4&F6,4C9,4D5, &CF
120 DATA &C1,&D1,8C9,801,800,&1D,4CD,&386
130 DATA &80,&06,406,4C5,4E5,406,440,47E
140 DATA &D3,8&08,823,805,4E3,&E3,8C2, 847
150 DATA &80,&E1,&4C1,&10,%EE, 06,440,411
1680 DATA 840,800,&19,&7E,&D3,408,423,4E3
170 DATA &E3,&10,&F8,8CS9,802,4C2,4F4, 400
180 DATA &00,&00,8&00, 803,802,800, &00, &00
180 DATA &01,803,404,808,811,4&20,400,800
200 DATA &00,800,801,873,4FF,&FF,AFF,&FF
210 DATA &FF,&71,840,480,400,400, &00,4&70
220 DATA &63,8&C7,4&FF,&EE, &FE, &FF, &FF, &FE
230 DATA &FF,&FF, &40, 400,400,400, 400, &80
240 DATA &F8,&DE,&80,800, 800,400,800, 800
250 DATA &FB,&C4,&22,%11,408, 404,00, &00
260 DATA &01,801,802,802,801,801,8&00,800
270 DATA &FF,&08,408, 408, 4&08,408,408,4C0
280 DATA &20,820,&10,810,820,820,&C0,&C0O
280 DATA &FF,&C0,&C0,&C0,&C0,aC0,4C0, 800
300 DATA &01,801,802,802,801,801, 800,800
310 DATA &FF,&08,408, 408,408, 808,408, 4C0

22

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
800
610
820
830
840
650
660
870
680
630
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

A DAY AT THE RACES

%20,420,%10,&10,4&20,420,4&C0,&C0
&FF,&C0,8C0,8C0,&C0,&C0,&C0, 800
00,800, %00, 802, &03, 400,401,401
801,800, &00, &00, 800,801,802, 800
&00, &00, 800,801,473, &FF, &FF, &FF
&FF,&FC,&FO0,&F0,&A0, &40, &80, 800
30,431, 4F3, &EF,&CF, &FF, &FF,4FE
&FE, &FF, 843, 802, &05, &04A, .04, 800
%60, &F0, &F8, &8E, 400, 400, 00, 400
200, 800, &80, &80, &00, &00, &00, &00
&01,801,402,4802,401,401, 400,400
&FF, %08, 808, &08, 08, &08, &08, &C0
%20,820,%10,&10,4&20,420,&C0,4C0
&FF,&C0,&C0,&C0,8C0,8&C0,&CO, 00
&01,801,802,802,&01,401,&00,&00
&FF, 808, &08, &08, &08, &08, &08,&C0
820,820,&10,&10,8&20,820,&C0,&C0O
&FF,8C0,8C0,8C0,8C0,&C0,&C0, 800
&CD, &25,&80,806,401,4C5, 421,467
&80,&CD, &3B, &80, %06, 802, &C5,&01
&0B, &06,&CD, &38,482,801,801, 40D
&CD, 838,882,821, 844A,882,801,&00
&3B,&CD, &36, &80, 401, &0B, &06, &CD
&38,882,801,801,80D,8CD, 838, 482
%06, &0E, &C5, 406, &404,47E, &D3, &08
&23,8E5,&E1,4&10,48F8,4C1,&10,8F2
&21,%E7,&80,4CD,&1E, 482,401, &0F
806, &CD,&38,482,401,805, &0D,&CD
&38,482,4CD,83B,480,4C1,4&10,4B6
&3A, 800,883, &FE,&F0,&20,&0B,&4ES
&21,47B,482,4BE,&E1,4&20,403,4C3
&DD,2881,83A,47B,&82,4D6, 408,432
%7B,482,832,47F,482,4C1,410,48D
&CD,%E4,881,&C9,821,84B,882,4CD
%09,482,821,453,482,4CD,403,482
&21,&5B,882,8CD,809,882,821,&63
&82,aCD,809,482,%21,46B,482,4CD
809, 882,8%21,873,&82,4CD, 409,482
&C9,&ED,&5F, &F6,AFC,&2F ,&5F L7E
&83,477,823,823,423,823,47E,L.83
&CD, &3F, &82,477,4&C9,4C9,&C5, &ES
&D5, 806, 83F, &C5,806,&FF,&11,801
£00,821,400,400,4&19,438,4FD,&10
&F8,8C1,&10,8%EF,8D1,&E1,&C1,4CS
&78,4&D3, %02,479,4D3,403,4C9,4FE
&84, 8D8, &F5, &3E, &F0, 832,400,483
&F1,8C9,%10,408,%A0,801,&10,4&18
&A4,801,828,808,8A8,%08, 428,418
&AC, %08, 440, &08, &B0, 404,440,418
&B4, 804, 858, 808, 888, 40D, &586,&18
&BC, &0D, 70, &08,4C0, &0E,&70,&18
&C4,80E, 888, &08,4C8, 407, 488,418
&CC,&07,4&00, 428, 4D0, &0F, 898, 428
&D4,&0F, 800, &FF

23

& DAY AT THE RACES

Although the loader Program is not needed, as once run it
Creates an OBJect file for use by the main program, it would
be wise to save it Just in case a mistake has been made. Run
the above program to create the file HORSE.OBJ. You can test
the machine code with the following short Program.

10 TCOL1, 15

20 CLs

30 CLEAR &8000

40 LOAD "HORSE.OBJ"
50 FOR F=1 TO 60
80 CALL &8000

70 NEXT F

80 END

When run you should have six horses galloping across the
screen from left to right, Plus tuo furlong markers moving
from right to left. If not reload the loader program and
check the data. If all is o0.k. reset the machine go back
into BASIC and type in the main Progranm.

50 RST

100 CLEAR&8000

150 LOAD"HORSE.OBJ"

200 GOSUB 4700

250 GOT01050

300 CALL&8000

350 FOR F=0 TO150:CALL&8167: A=PEEK (&8222) : IF A>L27THEN
A=A-1

400 IFPEEK(&SSOO)(>0THENPOKEI&820C).&Fﬂ

450 POKE(&8222),4A

500 FORG=&824FTO&827TSTEP8=IFPEEK[GJ)237THENGOT03700

550 NEXTG

600 NEXT

650 FOR F=&824BT0&8273 STEPS8

700 POKE(F),8:NEXT

750 FOR F=8824FT088277 STEPS

800 POKE(F),24:NEXT

850 POKE(&8222),83F

900 POKE(&8300), 0: POKE (&820C) , &FC

950 POKE(&827B}.40=POKE(&827F1,40

1000 GOTO 300

1050 REMSTART

1100 TCOL1,2:BCOL2:CLS40

1150 GOSUB4z00

1200 GOSUB4550

1250 FOR A=1TO6

1300 TP$=J$(RND(6)+1)

1350 R$(A)=TP%

1400 FORG=0TOA-1:1F TP$=R$(G)THEN1300

1450 NEXTG

1500 NEXTA

1550 FOR A=1TO6

1800 TP$=H$(RND(6)+1)

24

1850
1700
1750
1800
1850
1800
1850
2000
2050
2100
2150
2200

2250
2300
2350
2400
2450
2500
2550
2600

2650
2700
2750
2800
2850
2900
2850
3000
3050
3100
3150
3200
3250
3300
3350
3400
3450
3500
3550
3800
3850

3700
3750
3800

3850
3860
3870
3900
3950

A DAY AT THE RACES

S$(A)=TPs

FORG=0TOA-1:1F TP$=S$(G)THEN1600

NEXTG

NEXTA
RESTORE1900:FORF=1T08: READOS (F) : NEXTF
DATAZ7 1", "5/4", 371", "T/74","9s2" ,°5/2"

FORF=1TO6

TP$=0%(END(B)+1):0D3(F)=TP2
FORG=0TOF-1:IFTP$=0D$(G)THEN200O

NEXTG,F
FORF=1TO6:HO$(F)=STR$(F)+5S8(F)+E$(F)+0D$(F):NEXTF
TCOL1,2:PRINT@1,2:" NEXT RACE
TCOL15,2:N=5:FORF=1T0&6

PRINT®1,N;:;F;86,N:S$(F);:820 ,N:R$(F):834,N:0D$(F):N=N+2
NEXTF

PRINT@9, 18; "PRESS G TO START®
TCOL15,2:PRINT@15, 18; : K=INCH: IFK<>71THEN2450
PRINTES5, 18; "THEY'RE UNDER STARTERS ORDERS!*
VOICEO, 30, 15,2,50,5:TENPO7
H$="G7B7+D5+D5+D5+DSR7B7B7B7RB8G7B7G7DBR" : HUSIC "VO"
+Hs

GCOL15, 12:TCOL15, 12: BCOL12:CL540

DRAWO, 181 TO 258, 181

DRAW 0,29 TO 258,29

FOR F=4TO 252STEP 8

DRAW F,181 TO F, 175

DRAW F,29 TO F,23

NEXT: HAGZ2

SPRITEO,8,56,7, A0

SPRITE1,24,56,7,4&A4

SPRITEZ, 08,80 , 14,8A0

SPRITE3, 24,80, 14, 4&A4

SPRITEA4,08, 104, 13, &A0

SPRITES, 24, 104, 13, &A4

SPRITES, 08, 128, 4, &A0

SPRITE7,24, 128,4, 4A4

SPRITES, 08, 152, 8, &A0

SPRITES, 24, 152, 8, &A4

SPRITE10,08, 176, 1, &AD

SPRITE11,24,176, 1, &A4
M$="+D5+D5+D5+DSR7B7B7B7B7R8D7D7D7GSR"

MUSIC "VO"+H$:PRINT@®10,0; "THEY'RE OFF":FORF=1T0300:
NEXTF :PRINT@10,0;SPC(12):GOTO850

REH

TCOL15S, 1:PRINT®11,0; *“RESULT TO FOLLOW*
C=1:FORF=824FTO&B277STEP8:HO$(C)=HO$(C)+STR$(PEEK(F))
:C=C+1:NEXTF

N=6:FORJ=1TO(N-1) :FORI=(J+1)TON:L=N+J-1+1
W=VAL(RIGHT$(HO$(L),3)):V=VAL(RIGHT$(HO$(J),3))
IFW>=VTHENT$=HO$ (L) : HO$(L)=HO3$(J) : HO$ (J)=T%$
NEXTI:NEXTJ

FORG=1TO8:TCOL15,2:FOR F=1TO200:NEXTF:PRINT@11,0;
"RESULT TO FOLLOW":TCOLZ, 15:FORF=1T0200:NEXTF

25

3360

4000

4050
4060

4100
4150
4200
4250
4300

4350
4400
4450
4500
4550
4800
4650
4700
4750
4800
4850
43800
43950
5000
5050
5100
5150
5200
5250
5300
5350
5400

5450

5500
5550
S800

5700

5750

A DAY AT THE RACES

TCOLZ, 15:PRINT@11,0: "RESULT TO FOLLOW":NEXTG:TCOL2,2:
SPRITEOFF:CLS32

TCOL4,2:FORF=20TO4STEP-1:PRINT@S, F;CHR$ (235) ; @24, F ; CHES
(235) :NEXTF:TCOL1,2:FORF=0TO3:PRINT®S, F;HULS(CHR$(219)
+20) : NEXTF

PRINT®11,1;" RESULTS ";@13,2; "FRAHE"

N=4: TCOLl 15:FORF=1T03:PRINT@6, F+N; LEFT$(HO$(F),2); "
“MID$(HO$(F),3,10);" ";MIDS(HO$(F),23,3)" ":N=N+1:
NEXTF

PRINT@3,22; *PRESS A KEY FOR NEXT RACE"

PRINT@14,22; :K=INCH:TCOL2,2:CLS40:G0T01200

REH

RESTORE4300:FORA=1T0O6:READH$(A) :NEXTA

DATA"HENRYBUCK", "SPYCATCHER", "QUATERMASS", "PIED

PIPER", "BLACKADDER", "MAGGIE HAY"
RESTORE4400:FORF=1TO6:READJ$(F) : NEXTF

DATA"H. BIRCH ", "A.BOND Y B BEBDEEY Y

DATA"G. SEXTON ","W. CARSON ", "S. CAUTHEN"

RETURN

TCOL4, 15:PRINT@6,0:"A DAY AT THE RACES"
TCOL14,2:PRINT@3,4;" HORSES JOCKEYS opps*
RETURN

REHSETUPANDINFO

DIHHO$(27)

REH

SHAPE 160, *0000000003020000 "
SHAPE161, "0001030408112000 "
SHAPE 162, *0000000 173FFFFFF "
SHAPE163, "FFFF7 14080000000 *
SHAPE 164, "7063C7FFEEFEFFFF "
SHAPE165, "FEFFFF4000000000 "
SHAPE166, "60F8DES000000000 *
SHAPE167, "0OF8C42211080400"
SHAPE 168, *0000000002030001 *
SHAPE169, *000000000173FFFF *
SHAPE170, *00303 1F3EFCFFFFF "
VOICE 0,31, 15,2, 100,2:TCOL1S, 2: BCOL2:CLS40: N$=*
WELCOME TO A DAY AT THE RACES "iL=1
M$="G4G4G7E7GBAGGEETREBDBRESDBGAG4G7E7GTATRGTE7D7DTET
D7C7C7CBE7G7+COATA7+C7A7G7TRG4G4G7ETG7G7GTATGSE7DEDSDTE
7DEDECBR * :
TEMPO7: SPEED245:PRINT@S, 1;N$
SPEED 255:DRAW32, 175T0223, 175: SPEED245
PRINT®0,3; "ALL YOU HAVE TO DO IN THIS GAME IS SIT
WITH YOUR FRIENDS OR FAMILY ";@828,4;"AND ENJOY ALL
THE THRILLS®
PRINT@16,5; "AND EXCITEMENT OF

A DAL AT . THE AR "
PRINTR0,9; "AS YOU ENJOY A FRIENDLY BET OR JUST SIT
BACK AND WATCH AS TOP HORSE AND JOCKEYS ARE PUT
THROUGH THEIR PACES"
SPEED 255:TCOL1,15: PRINT@12,17:°G 0O D L U C K*
HUSIC "VO"+M%
RETURN

26

3360

4000

4050
4060

4100
4150
4200
4250
4300

4350
4400
4450
4500
4550
4800
4650
4700
4750
4800
4850
43800
43950
5000
5050
5100
5150
5200
5250
5300
5350
5400

5450

5500
5550
S800

5700

5750

A DAY AT THE RACES

TCOLZ, 15:PRINT@11,0: "RESULT TO FOLLOW":NEXTG:TCOL2,2:
SPRITEOFF:CLS32

TCOL4,2:FORF=20TO4STEP-1:PRINT@S, F;CHR$ (235) ; @24, F ; CHES
(235) :NEXTF:TCOL1,2:FORF=0TO3:PRINT®S, F;HULS(CHR$(219)
+20) : NEXTF

PRINT®11,1;" RESULTS ";@13,2; "FRAHE"

N=4: TCOLl 15:FORF=1T03:PRINT@6, F+N; LEFT$(HO$(F),2); "
“MID$(HO$(F),3,10);" ";MIDS(HO$(F),23,3)" ":N=N+1:
NEXTF

PRINT@3,22; *PRESS A KEY FOR NEXT RACE"

PRINT@14,22; :K=INCH:TCOL2,2:CLS40:G0T01200

REH

RESTORE4300:FORA=1T0O6:READH$(A) :NEXTA

DATA"HENRYBUCK", "SPYCATCHER", "QUATERMASS", "PIED

PIPER", "BLACKADDER", "MAGGIE HAY"
RESTORE4400:FORF=1TO6:READJ$(F) : NEXTF

DATA"H. BIRCH ", "A.BOND Y B BEBDEEY Y

DATA"G. SEXTON ","W. CARSON ", "S. CAUTHEN"

RETURN

TCOL4, 15:PRINT@6,0:"A DAY AT THE RACES"
TCOL14,2:PRINT@3,4;" HORSES JOCKEYS opps*
RETURN

REHSETUPANDINFO

DIHHO$(27)

REH

SHAPE 160, *0000000003020000 "
SHAPE161, "0001030408112000 "
SHAPE 162, *0000000 173FFFFFF "
SHAPE163, "FFFF7 14080000000 *
SHAPE 164, "7063C7FFEEFEFFFF "
SHAPE165, "FEFFFF4000000000 "
SHAPE166, "60F8DES000000000 *
SHAPE167, "0OF8C42211080400"
SHAPE 168, *0000000002030001 *
SHAPE169, *000000000173FFFF *
SHAPE170, *00303 1F3EFCFFFFF "
VOICE 0,31, 15,2, 100,2:TCOL1S, 2: BCOL2:CLS40: N$=*
WELCOME TO A DAY AT THE RACES "iL=1
M$="G4G4G7E7GBAGGEETREBDBRESDBGAG4G7E7GTATRGTE7D7DTET
D7C7C7CBE7G7+COATA7+C7A7G7TRG4G4G7ETG7G7GTATGSE7DEDSDTE
7DEDECBR * :
TEMPO7: SPEED245:PRINT@S, 1;N$
SPEED 255:DRAW32, 175T0223, 175: SPEED245
PRINT®0,3; "ALL YOU HAVE TO DO IN THIS GAME IS SIT
WITH YOUR FRIENDS OR FAMILY ";@828,4;"AND ENJOY ALL
THE THRILLS®
PRINT@16,5; "AND EXCITEMENT OF

A DAL AT . THE AR "
PRINTR0,9; "AS YOU ENJOY A FRIENDLY BET OR JUST SIT
BACK AND WATCH AS TOP HORSE AND JOCKEYS ARE PUT
THROUGH THEIR PACES"
SPEED 255:TCOL1,15: PRINT@12,17:°G 0O D L U C K*
HUSIC "VO"+M%
RETURN

26

IDENTIKIT

Once typed in and run this program offers you the plenty of
scope to be your own detective. A face will appear together
with a comprehensive list of features which you are able to
alter. Once satisfied with the results you can save it and
recover it for future reference or alteration.

10 REM+++++++++ 4444444445443+ ++

20 REM+ b
30 REM+ FACES FOR UKEUG +
40 REM+ by PETE HEFFERNAN +

50 REM++++++++++44 4+t 4ssssseeess
60 CLEAR&BOOO:PRINT CHE®(20):MAGO
70 10MO,0

80 ON ERR GOTO3110

90 REM

100 REH

110 CLS

120 SHAPE 140, *78C0ACS0OS0000000 "

130 ORIGINO.O

140 Q=.66:§=.88

150 GOTO370:REN DIMENTION

160 REHM

170 EST:END

180 CLS

190 FORI=1TO186

200 READ X(I)

210 X(I)=X(1)-60

220 X(I)=X(I)=Q

230 N(I)=K(I)

240 NEXTI

250 FOR I=1T0188

260 READ YI(D)

270 Y(I)= Y(I)=E

280 H(I)=YLI)

290 NEXTI

300 GOTO600:REH DEAW

310 REH

320 REH

330 REH

340 REH

350 REH

380 REHM

370 DIM F(40):DIH X(186):DIM Y1186):F(1)=5:F(2)=5

380 DIM M(188):DIM N(188)

390 X=3:Y=10:Z=3:G0SUB 530:X=11:Y=16:Z=6:G0SUB530:X=19:
Y=26:Z=7:G0SUB530:X=30:¥=37:Z=3:G0SUBS30:X=34:Y=36:
Z=2:G0SUB530

400 F(17)=4:F(18)=4:F(23)=3:F(24)=3

410 F(27)=11:F(28)=13:F(29)=13

420 DIM X$(186):DIM Y$(1886)

430 PRINT@S, 10;*(N)orm or (Flile®;

440 K#=INCH$

450 IFK$="F*THENGOTO02830

460 IFK$="N"THEN180

27

IDENTIKIT

470 GOTO440

480 REM

490 REH

500 REHM

510 REH

520 REH

530 FOR I=XTOY:F(I)=Z:NEXTI

540 RETURN

550 REHM

560 REH

570 REH

580 REH

590 REH

600 ORIGINBB-((X(2)-X(1))+X(1)),92-Y(1)
610 ELLIPSEX(1),Y(1),.8

620 ELLIPSEX(2),Y(2),.8

630 I=2

640 FORJ=1TO37

650 I=I+1

8680 L=1

670 IFL=F(J)THEN GOTO710

680 DRAW X(I),Y(I)TO X(I+1),Y(I+1)
690 L=L+1:I=I+1

700 GOTO 870

710 NEXTJ

720 I1FS<>STHENGOTO1030

730 RETURN

740 REH

750 REH

760 TCOL15,6

770 PRINT@23,0;" ’esc’ to EXIT "
780 TCOL15,4:FORF=1T020:PRINT@23,F;SPC(16) : NEXTF
790 PRINT®@23,1;"L/IRIS R/IRIS "
800 PRINT@23,2;"BrsL LID B/R LID"
810 PRINT®23,3;"B/L EYE B/R EYE"
820 PRINT®23,4;"T/L EYE T/R EYE"
830 PRINT@23,5;"L/EYE L R/EYE L"
840 PRINT®23,6;"L/NOSE R/NOSE "
850 PRINT®23,7;:"L/NOST R/NOST "
860 PRINT@23,8;"T/LBROW T/RBROW"
870 PRINT@823,9;"B/LBROW B/RBROW"
880 PRINT@23, 10;"T/U LIP BrsU LIP"
890 PRINTE@23,11;"T/L LIP B/L LIP"
900 PRINT®23, 12;"L/FACE R/FACE "
910 PRINTB23, 13; "L/EAR R/EAR "
920 PRINT@23, 14; "JAN HAIR 3
930 PRINT®23, 15;"TP HEAD L/CH LN"
840 PRINT@23, 16;"R/CH LN L/CH BN"
950 PRINT@23,17;"R/CH BN L/U/LIP"
8960 PRINT®@23, 18;"R/U/LIP C/CLEFT"
970 PRINT®23,19;"C/LINE WIDTH "
880 PRINT823,20; "HEIGHT SAVE .
980 RETURN

1000 REHM

28

1010
1020
1030
1040
1050
1080
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400
1410
1420
1430
1440
1450
1460
1470
1480
1480
1500
1510
1520
1530

IDENTIKIT

REH

REH

GOSUB760
C=1:R=23:TCOL1,4:G0SUB1560

GOTO 1140

SPRITE OFF

A$=INCH3

IF A$=CHR$(10)THENC=C+1:G0SUB1530
IF A$=CHR$(11)THENC=C-1:GOSUB 1260
IFA$=CHE$(4)THENR=31:G0SUB 1350
IFA$=CHR$(8) THENE=23:G0OSUB 1440
IFA$=CHR#(13)THENGOSUB2150C
IFA$=CHR$(27)THENGOTO170
TCOL15,4:PRINT@23,21;:5PC(15)
PRINT®25,21;F(H-2);: "Points"”
TCOL1,4

PRINT@23,22; "SELECT FEATURE *
PRINT@23,23:" TO ALTER -
TCOL15,4

GOTO 1060

REH

REM

REH

REH

REH

IFC<1 THEN BEEP:C=1 :A$="":RETURN

TCOL15,4:PRINT@BR, (C+1);HIDS(SCRN$(C+1),E+1,7):

TCOL1,4

REH

PRINT CHR$(23)

PRINT@R ,C;MID$(SCRN$(C),R+1,7)
PRINT CHR$(23)
IFR=23THENH=(C%2)+1
IFR=31THENH=(C*2)+2

RETURN

k=31

TCOL15,4:PRINT@23,(C)iHID$(SCRN$(C)
REM

PRINT CHR$(23)

,24,7)

TCOL1,4: PRINT@31,C;MID$(SCRN$(C),32,7)

PRINT CHR$(23)

IFR=23THENH=(Cx2) +1
IFR=3I1THENH=(Cx2)+2

RETUERN

R=23

TCOL15,4: PRINT@31,(C):HID$(SCRNs$(C
REH

PRINT CHE$(23)

TCOL1,4:PRINTE@R ,C;MIDS(SCRNS(C),R+1,7)
PRINT CHRs(23)

IFR=23THENH=(C*2)+1
IFR=31THENH=(C*2)+2

RETURN

1FC>20THEN BEEP:C=20:A$="":RETURN

29

),32,7)

1540

1550
1560
1570
1580
1580
1800
1610
1820
1830
1640
1650
1660
1670

1680
1690

1700

1710

1720

1730

1740
1750
1760

1770

1780
1790

1800
1810
1820
1830
1840

IDENTIKIT

TCOL15,4:PRINT@R, (C-1) ; HID$ (SCRN$(C~1),R+1,7):
TCOL1,4

REM

PRINT CHR$(23)

PRINT@R ,C;HID$(SCRN$(C),R+1,7)

PRINT CHR$(23)

1FR=23THENH=(C*2) +1

IFR=31THENH=(C*2)+2

RETURN

REH

REM

REH

REM

REH

DATA135, 190, 134, 128, 133, 140, 135, 190, 184, 189, 196, 190,
119, 133, 147, 177, 190, 203, 121, 133, 147, 177, 191, 201
DATA118, 132, 148, 176, 191,204, 127, 135, 144, 178, 187, 196,
156, 156, 156, 154, 186, 161, 166, 166, 166, 168, 167, 161
DATA150, 147, 148, 148, 153, 161, 173, 176, 177, 174, 170, 163,
112,113, 125, 139, 150, 152, 171, 173, 186, 199, 208, 211
DATA112, 124, 138, 152, 171, 187,200,210, 137, 149, 156, 162,
188, 177, 187, 138, 148, 156, 163, 170, 178, 186, 138, 149, 156,
163, 170, 177, 186

DATA141, 148, 155, 183, 171, 173, 185, 103, 101, 104,219,222,
218,99,92,88,90,94,99, 104, 224,231, 234, 232, 230, 224,
219, 104, 108, 115

DATA129, 147, 162, 180, 196,207,215,219, 101, 107, 114, 120,
131, 146, 160, 174, 188, 201,210,217, 222

DATAS3, 78, 76,82, 99, 129, 158, 188,217, 236, 245, 250, 233,
145, 139, 135, 178, 185, 190, 105, 109, 112,218,214, 211, 159,
159, 165, 165, 162

DATA162, 153, 162, 173

REMAK KRRk kR kokkokok ok koo ook ok ok ok

DATA105, 105, 109, 106, 101, 106, 109, 109, 1086, 101, 106, 103,
103, 110, 104, 103, 109, 103, 103, 100, 104, 103, 100, 102, 107,
113, 108, 107, 113

DATA 107,96, 97, 100,99, 96, 96, 110,97,85,78,71,68, 110,
97,84,78,71,68,81,77,72,68,71,68

DATA 8178, 72, 68, 71, 68

DATA113, 118, 123, 122,119, 114, 114, 118, 121, 122, 118, 113,
112,118,116,114, 114,116,118,113
DATA47,51,54,51,53,51,48

DATA47,47,48,47,48,47,48

DATA47,47,48,47,48,48,47

DATA46, 43, 40, 39, 40,43, 47
DATA108,90,69, 110,91, 71, 100, 106, 101,90, 76, 63, 66, 101,
106,99,90,77,65,66
DATA69,51,36,22, 10,7, 11,22,35,51,72, 106, 121, 136, 145,
155, 158, 157, 155, 154, 147, 136, 124, 107

DATA46,77, 108, 149, 180, 204, 206, 205, 186, 156, 116, 72,50.
75,68, 60, 74,67,59,72,66,60,72,67,61,64,57, 64,57, 18
DATAIZ,32,34,31

FORI=1T0D186

PLOTX(I1),Y(I)

30

1540

1550
15680
1570
1580
1590
1800
1810
1820
1830
1640
1850
1860
1670

1680
1690

1700
1710

1720
1730
1740
1750
1760
1770

1780
1790

1800
i810
1820
1830
1840
1850
1860
1870

1890

IDENTIKIT

TCOL15,4:PRINT@R, (C—1);MID$ (SCRN$(C-1),R+1.7):
TCOLL, 4

REM

PRINT CHR$(23)

PRINT@R ,C;MID$(SCRNS$(C),R+1,7)

PRINT CHR$(23)

IFR=23THENH=(C*2) +1

IFR=31THENH=(C*2)+2

RETURN

REM

REM

REHM

REM

REH

DATA135, 190, 134, 128, 133, 140, 135, 190, 184, 189, 196, 190,
119, 133, 147, 177, 190, 203, 121, 133, 147, 177, 191, 201
DATA118, 132, 148, 176, 191,204, 127, 135, 144, 178, 187, 196,
156, 156, 156, 154, 186, 161, 166, 166, 166, 168, 167, 161
DATA150, 147, 146, 148, 153, 161, 173, 176, 177, 174, 170, 163,
112,113, 125, 139, 150, 152, 171, 173, 186, 199, 208, 211
DATA112, 124, 138, 152, 171, 187,200,210, 137, 149, 156, 162,
188, 177, 187, 138, 148, 1586, 163, 170, 178, 186, 138, 149, 156,
183, 170, 177, 186

DATA141, 148, 155, 163, 171, 173, 185, 103, 101, 104,219,222,
218,99,92,88,90,94, 99, 104, 224, 231, 234, 232, 230, 224,
219, 104, 108, 115

DATA129, 147, 162, 180, 196,207, 215,219, 101, 107, 114, 120,
131, 146, 160, 174, 188,201,210,217, 222

DATAS3, 78, 76,82, 99, 129, 158, 188,217, 236, 245, 250, 233,
145, 139, 135, 178, 185, 190, 105, 109, 112,218,214, 211, 159,
159, 185, 165, 162

DATA162, 153, 162, 173

REM&k¥kkkkkkkbkkkkkrkkiikkik

DATA105, 105, 109, 106, 101, 106, 109, 109, 1086, 101, 106, 103,
103, 110, 104, 103, 109, 103, 103, 100, 104, 103, 100, 102, 107.
113, 108, 107, 113

DATA107,986, 97, 100,99, 96,96, 110,97,85,78, 71,68, 110,
97,84,78,71,68,81,77,72,68,71,68

DATA 8178, 72, 68, 71, 68

DATA113, 118, 123, 122,119, 114, 114, 118, 121, 122, 118, 113,
112,118,116,114, 114,116, 118,113
DATA47,51,54,51,53,51,48

DATA47,47,48,47,48,47,48

DATA47,47,48,47,48,48,47

DATA4B, 43, 40,39, 40, 43, 47

DATA109, 90,69, 110,91, 71, 100, 106, 101,90, 76, 63,686, 101,
106, 99,90, 77,65, 66

DATAB9,51, 36,22, 10,7, 11,22,35,51,72, 1086, 121, 138, 145,
155, 158, 157, 155, 154, 147, 136, 124, 107

DATA46,77, 108, 149, 180, 204, 206, 205, 186, 156, 116, 72,50,
75,68, 60,74,67,59,72,66,60,72,67,61,64,57,64,57, 18
DATAIZ,32,34,31

FORI=1T0D186

PLOTX(I),Y(I)

30

1800
1910
1920
1830
1840
1950
1960
1970
1980
1990

2010

IDENTIKIT

NEXTI

A=2

FOR I=1TOH-2

A=A+(F(1))

NEXTI

I=A-(F(H-2)-1)

D=1

IFD=F(H-2)THEN GOTOC2020

DRAN NC(I).H(I) TO N(I+1) H{(I+1),]1

N(I)=E(1):H(I)=0TL])

=D+ i:I=I+1
GOTO 1970

RENM
REN

I=A-(F(H-2)-1)
D=1

IFD=F{H-Z2)THEN GOTO02100
DRAN X(I), Y(I) TO X(I+1),Y(I+1)
D=D+1:1=1I+1
GOTO 2080

RETURN
A=2
FOR I=1TOH-2
A=A+(F(I))

NEXTI
1FR=23ANDC=20THENGOTOD2420
IFR=31ANDC=19THENGOT02600
1FR=31ANDC=20THENGOT0Z2770
A=2
FOR I=1TOH-2
A=A+(F(1))
NEXTI

I=A-(F(H-2)-1)

D=1

1FD=F(H-2)+1 THEN GOTO0Z410
SPRITEL. X1 ,¥{19 51,180
TCOL1, 15

PRINT@23,22; "POSITION ARROW"
PRINT@24,23; "AND PRES3 RET ";
TCOL15,4

Q$=INCHS$
IFQ$=CHR$(4)THENX(I)=X(I)+1
1FQ$=CHR$ (8)THENX(I)=X(I)-1
IFQ$=CHR$(11)THENY(I)=Y(I)+1
IFQ$=CHR$(10)THENY(I)=Y(I)-1
SPRITE1,X{(1) ,¥Y(I) ;1,140
1FQ$=CHR$(13) THENGOTO2380
GOTO02300

PLOTX(I),Yi1)

D=D+1:1=1+1

GOTO 2240

GOTO1910

TCOL1,4: PRINT@®23,21;3SPC(15)
PRINT@23,22;3PC(15)

31

2440
2450
2480
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2590
26800
2611
2612
2615
2820
2630
2640
2650
26860
2670
2680
2690
2700
2710
2720
2730
2740
2750
2780
2770
2780
27390
2800
2810
2820
2830
2840
2850
2860
2870
2880
28390
2300
2910
2820
2930
2340
23950
2960
2970

IDENTIKIT

PRINT@23,23:8PC(15);
PRINT@23,21;"Hgt ratio";W
A=W

PRINT@23,22;"New ratio";
INPUTW

TCOL15,4: FORI=1TO1886
Y(I)=(Y(I)/A)%W

MH{I)=Y(]I)

NEXTI

FORI=0T023

PRINT@O, I1:SPC(40)
NEKTI : GOSUB760

S5=5:G0SUBEB00O

RETURN

PRINT@A23,21:" E
PRINT@23,22;" ’
PRINT@23,23:" %3
PRINT®23,21;"Wid ratio";Q
A=Q

PRINT@23,22; "New ratio";
INPUTQ

FORI=1TO186

X(I)=(X(1)/A)%Q

N(I)=X(I)

NEXTI

FORI=0TO23

TCOL15,4:PRINT@0, I1;SPC(40)
NEXTI :GOSUB780

SPRITEOFF

S=5:GOSUB600

PRINT®23,21; " "
PRINT®23,22;" "
RETURN

PRINT®23,21;" "
PRINT@23,22; " .
PRINT@23,21; "FNAME";

INPUTFS

PRINT@23,21;* ’

FORI=1TO186

POKE&AFFF+I, ((X(I)/Q)+80)
NEXTI

FORI=1TO186
POKE&AFFF+186+1,(Y(I)/W)
NEXTI

W=W%x100:Q=Q%100
POKE&BOOO+373, W

POKE&BOOO+374,Q

SAVE F$+".0BJ", &B00O, (&B0O00+374)
RETURN

CLsS

PRINT@23,21; "F/NANE";

INPUTF$

LOAD F$+".0BJ"
W= PEEK(&B0O00+373)

32

2980
2980
3000
3010
3020
3030
3040
3050
30680
3070
3080
3090
3100
3110
3120
3130
3140
3150
3180
3170
3180
3180

Q= PEEK(&B000+374)
W=W/100:Q=Q/ 100
FORI=1TO186
X(I)=PEEK(&AFFF+1)
X(I)=(X(I)-B0)%Q
N(I)=X(1)

NEXT

1

FORI=1TO186
Y(I1)=PEEK(&AFFF+186+1)
Y(I)=Y(1)%W
H{I)=Y(I)

NEXTI
5=0:GOTOB00

CLS

PRINT@S,5; "THE FILE ";F$;" DOES NOT EXIST®

PRINT@S,7;" FILES ON THIS DISK ARE

PRINT:DIR"*%.0BJ"

PRINT@3, 16; "USE ONLY LETTERS TO THE LEFT OF THE "

IDENTIKIT

PRINT@10,20;"Hit a key to continue"
A$=INCHS

IFA$<>""THEN RST: RUN

GOTO3170

‘esc* to EXIT
R/IRIS

BsL LID BsR LID
B-L EYE BsR EVE
TsL EYE T/R EYE
L/EYE L R/EYE L
L/MOSE RsNOSE
L/MNDST R/7NOST
TABROM T/RBROW
B/REROW

ATOHIC

A game of logic combined with speed of thought, the object
being to arrange a route around the screen to reach 8
numbered locations without backtracking or crossing over
your path. Instructions for the game are in the program. The
'world® was originally written by Martin Page and wuses a
large amount of data statements, if you find the thought of
entering all these data statements daunting, make Line 7020
GOTO 7280 and change 7290 to read PRINT®0,8:;" HURRAH YOU'VE
SAVED THE WORLD", but you will miss out on a rather
spectacular drawing.

100 GOSUB 10000:REM***INSTRUCTIONS**x
110 GOSUB 1000:REM**xINITIALIZATIONX**
120 GOSUB 2000:REM*xxDISPLAY**x
130 GOSUB 3000:REH*xXGAHEX¥x

1000 REMX*k*INITIALIZATION*X*

1010 SHAPE 130, "FEFE383F3F38FEFE"

1020 SHAPE 131, "7F7F1CFCFCI1C7F7F"

1030 SHAPE 132, "C3C3FFFFFFDDDD18"

1040 SHAPE 133, "1818DDFFFFFFC3C3"

1050 LET T=0000:REH x%%x TIHE *xkx

1060 LET XT=0:LET YT=1:REM *xx* TANK *xX*

1065 LET OXT=0:0YT=1

1070 LET D=0:LET G=0:LET F=0

1080 LET RODS=01

1090 SHAPE 142, "1028444428100001"

1100 SHAPE 143, "1030101010380002*

1110 SHAPE 144, "38440438407C0003"

1120 SHAPE 145, "3844180444380004"

1130 SHAPE 146, "1828487C08080005"

1140 SHAPE 147, "7C40780444380006"

1150 SHAPE 148, "3840784444380007"

1160 SHAPE 148, "7C04081020200008"

1170 SHAPE 150, "3844384444380008"

1180 REHM 10M3,0

1900 RETURN

2000 REM**x*DISPLAY*®xx

2010 TCOL15,4:BCOL4

2020 CLS32

2030 PRINT @ 25,3, "TIHE"

2040 PRINT @ 25,19, "CODE"

2050 DRAW 0,15 TO 0,191 TO 191,191 TO 191,15 TO 0,15

2060 DRAW 7,23 TO 7,184 TO 184,184 TO 184,23 TO 7,23

2070 FILL 20,20,9

2080 IOH 5,0

2090 I0OH 4,0

2100 TCOL15,6

2110 FOR A=0 TO B

2120 LET X=RND (20)+2:LET Y=END (18)+2

2130 IF VPEEK(X*8+8192+Y%256)= 246 THEN GOTO 2120

2140 PRINT @ X,Y,CHRS(142+4)

2150 NEKT A

2160 PRINT @ 0O, 1,CHR$(131)

34

3200
3210
3220

3230
3240
3250
3260
3270
3280
3280
3300
4000
4005
4010
4020
4030
4040
4050
4060
4070
4080
40890
4100
4110
5000
5010
5020
5030

ATOMIC

TCOL15, 1

PRINT @ 25,20," "
RETURN

REM *x¥ GAHE *xx

TCOL15, 1

PRINT @ 25,4,T

M=KBD

IF H=75 THEN OXT=XT:0¥T=YT
IF M=76 THEN OXT=XT:0YT=YT
IF H=83 THEN OXT=XT:0¥YT=YT
IF M=87 THEN OXT=XT:=0YT=YT

IF H=75 AND D=2 THEN 6=10
IF M=75 AND D=3 THEN G=28
ijF E=76 AND D=2 THEN G=11
IF N=76 AND D=3 THEN G=27
IF H=83 AND D=1 THEN G=26
IF M=87 AND D=0 THEN G=11
IF M=87 AND D=1 THEN G=10
IF =83 AND D=0 THEN G=27

IF M=75 AND D=0 THEN G
IF ¥=76 AND D=1 THEN G=0

1F H=83 AND D=2 THEN G=4

IF M=87 AND D=3 THEN G=4

1F M=75 THEN LET XT=XT-1:F=0:D=0:ELSE IF H=76 THEN
LET XT=XT+1:F=1:D=1

1F M=87 THEN LET YT=YT-1:F=2:D=3:ELSE IF H=83 THEN
LET YT=YT+1:F=3:D=2

]JF M = 78 OR H =75 OR H -83 OR M =87 THEN 3230ELSE
3290

IF VPEEK(8195+XTx8+YT*x256)=241 THEN 5000

IF VPEEK(B8195+XTx8+YT%x256)=144 THEN 5000

I1F VPEEK(7+XT*8+YT*x256)<> 0 THEN GOSUB 4000

IF XT<0 THEN GOTO 5000

PRINT @ XT,YT,CHR$(130+F)

PRINT @ OXT,OYT,CHR$(184+G)

LET T=T+1:1F T=1000 THEN GOTO 5000

GOTO 3000

REM x%% CODE %Xk

BEEP

IF VPEEK (7+XT*x8+YT*256)<>R0ODS THEN 5000

LET CODE=RND(8999)+1000

PRINT @ 25,20,CODE

FOR A=0 TO 100:NEXT A

PRINT @ 25,20," "
PRINT
INPUT A

IF A=CODE THEN PRINT @ 25,20," ":ELSE GOTO 5000
PRINTB® 0,22," .

1F RODS =9 THEN GOTO 6000

LET RODS=RODS+1:RETURN

FORA=1TO 20

BCOL1:TCOL15,9

PRINT@ 10,10, "HELT DOWN"'

BCOLS

35

5035
5040
5050
5080
5070
5080
5080
6000
8010
8020

6030
6040
7000
7010
7020
7030
7040
7050
7080
7070
7080
7090
7100
7110
7120

7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240

7250
72680
7270
7280
7290
7300
7310
7320
7330
7340

7350

ATOMIC

CLS

P5G6,31:PSG7,71

PS5G8, 16:PSGY, 168:PSG10, 16

P5G12, 100

PSG13,0

NEXT A

GOTO 7310

REM **%x WINNER *%x

FOR Z=0 TO 25

CLS40:TCOL15,RND(15):PRINT @ 5, 10; "YOU HAVE SAVED
THE WORLD":PRINT @ 5,12;"IN "T" HALF LIFE PERIODS*
NEXT 2Z

RESTORE

REHM WORLD

CLS5S40: TCOL15,7: BCOL7:GCOL12:CLS40

FOR X=0 TO 1 STEP O

READ N:IF N=0 THEN X=1:GO0T07060

READA,B:REHM USSR,AFRICA,INDIA

FORJ=1TO N:READC,D:DRAW A,B TO C,D:A=C:B=D:NEXTJ
NEXT X

REM EVEN SHALLER ISLANDS
PLOT248,76:PLOT251,75: PLOT250, 74
PLOT213,94:PLOT214,95:PLOT215,97

PLOTSS8, 154

PLOT133, 120: PLOT134, 120

PLOT113, 124:PLOT114, 124:PLOT113, 125:PLOT113, 127
:PLOT127, 121

PLOT117, 124

PLOTZ203, 105:PLOT204, 105: PLOT204, 108

FILL125,48, 12:REM AFRICA/EUROPE
FILL117, 144, 12:REHM SCANDINAVIA

FILL&3,25, 12:REM AMERICA

FILL8O, 148, 12:REH GREENLAND

FILL227,41, 12:REM AUSTRALIA

FILL206,77, 12:REH INDONESIA

FILL232,82, 12:REM INDONESIA

FILL211,81, 12:REH INDONESIA

FILL146,58, 12:REH HALAGASY

FILLB9, 151, 12:FILL67, 160, 12:FILLS50, 183, 12:

REM CANADIAN ISLAND

FILLe8, 1686, 12
GCOL1:ELLIPSE128,96,170,0.56:GC0L12

FILL239,0,1

FI1LL239,191,1

FILLO, 191,1

GOSUB 11000

CLS40:PRINT@S, 10; "STANDBY FOR YOUR NEXT MISSION":
A=INCH:RST:RUN

DATA323

DATA105, 135,113, 140,113, 142, 115, 140,119, 140, 121, 143,
123, 143, 123, 145, 124, 145, 125, 146

DATA 124, 147, 122, 148, 125, 152, 125, 153, 121, 153, 121, 151,
119, 149,119, 145,117, 143, 1186, 143

36

73680
7370
7380
7390
7400
7410
7420
7430

7440

SRR RERERERRRAERE:

ATOHMIC

DATA116, 144, 114,146,111, 145,111, 149, 113, 149, 120, 156,
122, 157, 124, 156, 128, 1586, 126, 154

DATA128, 152, 129, 154, 132, 155, 133, 155, 134, 154, 136, 154,
137, 155, 139, 154, 145, 157, 145, 160

DATA148, 157, 151, 162, 153, 162, 153, 158, 155, 154, 156, 155,
155, 162, 160, 159, 159, 182, 157, 163

DATA159, 163, 158, 164, 164, 185, 185, 167, 172, 166, 172, 165,
169, 161, 173, 164, 177, 163, 182, 164

DATA184, 164, 186, 165, 189, 163, 190, 165, 194, 165, 185, 164,
205, 164,206, 163,207, 164,218, 164

DATAZ219, 163,224, 163,226, 161,219, 161,218, 160,219, 158,
221, 158,223, 157,223, 156,220, 153

DATA223, 151,223, 147,224 145,218, 150,218, 153, 215, 156,
214, 156,212, 154,214, 153,212, 152

DATAZ11, 152,210, 1S3,207, IS1,206, 147.207, 146,211, 146,
212, 145,213, 140,214 140,214, 137

DATAZ13,. 136,214, 135 213, 134 217 15,211, 133,211, 130,
214, 125,212,125 208, 130,207, 129

DATAZ06, 130,205, 131,203, 128,204, 127.207, 127,207, 125,
211,119,210, 115,210, 113, 207, 112

DATAZOE, 110, 204, 108 203, 10S, 201, 108, 200, 108, 200, 105,
204, 100,204 97 202 95 201, ST

DATA1IST,. S5, IS7T.594,.201.86, 200, 88, 195 _54,201,88, 200,88,
1S6._S4_ 195 _S¢, 155 98 1S5 102, 191, 101, 188, 109, 183, 109
DATAIES, 106, ITE, 102, ITe, S, ITE, 54, 174,99, 174, 100, 170,
107, 167, 107, 189, 10S, 168, 11D

DATAIST, IOS, 168, 110, IS8, 111, I8S, 112, 182, 112,160,111,
57, 112, 156, 103, 147, 116, 146, 118
DATAINSL, 112, ISi, DU, ISP, 10S, IS5, 110, 1S57. 110, 157, 105,
150,99, 145,98, 142 WS, 135, 114

DATAISY, 105, 135, 114, 136, 106, 144, ST, 148,95, 152,97, 149,
o5, 152, 96, IS0, 95, ISP 95, 143, 82 140,75, 142.73
mmm.-.m.n. 37 S8, 131,50, 125,47,121,48,
120.52. 118,54, 119,58

DATAII7. S0, 115 63, 115,88, 11T.T0, 117.72.115,74,. 115,78,
132.81. 112,685,113 87

DATA113, 88, 112,89, 108 8S, 107,91, 104.89, 103,89, 102,90,
100.89,.95.85.54.90

DATASS,.91,91,54,.91,.55,.88,.398,.88, 104_ 895, 108,94, 113,95,
113.97,115,97. 117

DATA 100, 120, 104, 120, 108, 122, 113, 122,115, 118,117,118,
119, 116,120,116, 122,115, 124,118

DATA128, 118, 130, 117, 131, 11§, 132, 117, 1386, 117, 136, 122,
135, 123, 134,122, 132, 122,131,123

DATA130, 123, 128, 125,130, 1286, 132, 127. 133,128, 134, 127,
140, 127, 140, 129, 139, 130, 138, 130

DATA137, 131, 138, 133, 135, 133, 133, 131, 135, 131, 133, 133,
130, 132, 129, 131, 129, 127, 127, 128

DATA126, 127, 126, 124, 125, 123, 118, 131, 115, 130, 115, 129,
118, 126, 119, 126, 119, 124,118, 123

DATA119, 124, 113, 130, 110, 130, 109, 129, 108, 123, 107, 128,
107, 127, 105, 125, 105, 124, 104, 123

DATA102, 123, 100, 122,98, 123,98, 127,98, 128,99, 129, 101,
129, 102, 128, 105, 131, 105, 132

37

7630
7640
7650

7660
7670

7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810
7820
7830
7840
7850

7860
7870

7880
7890

7900

ATOHIC

DATA 103, 134, 105, 135, 107, 1386, 106, 137, 105, 138, 106, 139,
104, 141, 104, 143, 103, 144, 102, 144

DATA103, 143, 103, 141, 104, 140, 104, 138, 102, 138, 101, 138,
101, 140, 100, 140,99, 139,99, 138

DATA 101, 138, 102, 138, 103, 137, 101, 138, 108, 137, 103, 138,
105, 139

DATA189:REHM AMERICAS

DATAB9, 23,67,24,66,23,68, 24,62, 24,65, 25,63,27,63,30,
64,32,61,32

DATAB2, 33,61,34,62,35,62,36,61,37,62,38,63,39,63,40,
66,41,66,42
DATAB5,44,66,45,67,44,69,48,70,48,71,52,71,55,74,58,
78,58,78,70
DATAB1,73,81,76,77,80,76,79,74,81,73,80,70,82,68,80,
87,81,67,82

DATA68,83,66,82, 6s, 83,67,85,67,88,65,88,63,90,61,89,
59,92,58,92

DATAS7,95,54,94,51,95,45, 96, 44,94, 40,94,36,98,37,99,
37, 100, 34, 100

DATA33, 101,33, 105, 35, 107, 34 107,32, 104,29, 104,28, 105,
28, 107, 27,108527, 111
DﬂTA30.314.30,115,31,116.33.116.35,118‘37,118,41.114.
41,111,42,110,42,111
DATA43,112,43,119,46, 119,46, 120,48, 123,489, 124,54, 123,
56, 129,56, 130,58, 132

DATAB3, 134,61, 131,65, 132,66, 133,61, 134,63, 135,63, 136,
57, 136,61, 138,69, 138
DATA71,139,71, 141,67, 145,68, 147,65, 146,64, 147,65, 148,
62, 151,60, 149,60, 147

DATASS, 142,55, 141,53, 139,52, 140,53, 143,50, 144,48, 146,
48, 150,55, 155,57, 157

DATAB2, 157,62, 158,61, 157,60, 158, 58, ‘158,58, 161,57, 161,
s6, 158,55, 157,54, 158

DATAS2, 158,51, 159,49, 158,47, 159,46, 158, 44, 160,41, 160,
40, 161,35, 161,33, 1680

DATAS30, 162,29, 162,27, 164, 24, 163, 23, 162, 17, 162, 16, 160,
12, 160, 14, 158,7, 156
DhTa?.ISS.é,ISl.B,151.9.152,11.152.12,153,14.153.15.
154,21, 150,21, 147

DATA19, 145,20, 145,20, 142, 19, 141, 19, 137, 15, 130, 14, 128,
14, 120,15, 121,15,116
DATA17,111,16,119,17,120,19,118,20,111,22, 104,26, 101,
29,101,38,98,37,93
DATA43,91,43,89,39,79,43,68,50,64,51,63,57,28,62,24,
65,24,6 6,23

DATA38:REH GREENLAND

DATASBO, 146,85, 151,90, 153, 93, 156, 94, 155,97, 155,98, 157,
100, 157,99, 158, 99, 159

DATA102, 162, 105, 167, 108, 167, 108, 169, 105, 169, 104, 170,
102,170,101, 171,97,171,95, 169

DATA92, 169,91, 168,89, 170,87, 168,886, 169,85, 169, 84, 168,
82,170,79, 170,80, 170

DATA77, 166,75, 168,77, 165, 79, 165,80, 161,78, 165,79, 162,
80, 159,79, 146

38

8070

8090

8100
8110

8120

8130
8140

8150
8160

8170

8180
8190

8210

8240

ATOHIC

DATA42:REH AUSTRALIA
DATAZ08.45,211,45,213,47,219,47,221,45,221,44,222,45,
224,45 ,222,42,223,40

DATA226, 39, 229, 39, 233,43, 234,43,237, 46,237, 47, 239,43,
239,50,240,51,240,57

DATA23S. 58, 239,59, 238,60,238,61, 237,62, 237, 69,236, 70,
232,62,229,66,230.70

DATA226, 70, 223.67,222,68,.214,60,210,60,207, 56, 207,55,
206,54,206,47,205,46

DATA 205,45,206,44,207,44

DATA16:EEM NEW ZEALAND
BIT1232.27,247.35.24?.37,246,38.248.40.245.35.246,37.
243,36,244,34,242,33

DATAZ240, 33, 240, 34,231, 28,232, 28,240, 33,238,29,236,30
DATA17:REH INDONESIA
DlTllSG.SO.lSG.G?.196,85,198.82,205,75.214.?4.218.75,
220,74,218,75,213,74,210,75, 205,80, 205,81
DATAZ04,80,203,81, 200,85, 197,87, 194,80

DATA 23 .
DATA236.73.238,75.241,72.243.72,240.75.241,72.239.75,
240,76,241,77,240,77,236,81,231,83
DATAZS1.80.229.80.229.83,228,79.228.82.227.81,231.79.
233,77,232,75,233,75

DATA234,74,235,74

DATAZ1
DnTnZOS.85,207.32,207.81.210,80,212.80.213,84.213.85,
219,86,217,85,215,84,214,80
DATa218,83.217.79.216.82,218,83,215.78.215,85,213.85.
213,91,214,90,212,89,207,86

DATA17:REM DEAD SEA
DATA143.133.144,130.145,129,147,127.146.125.147,125.
148, 124, 151, 123, 151, 125, 150, 128
DAT&ISI,128.150.130,149.130.148.131.150.131.150.133.
149, 134, 144, 133

DATAS:REM HALAGASY .
DATA14?.57,149.69,146,68.145,66,145,64,146.63.146.61.
145,60, 145,58, 147,57

DATA23:REHM JAPAN
DAT&218.125.219.125,219.124.220.125,221.128.222,128.
222,130,221, 131,221, 133,220, 134
DATAZZI.135.221.138,220.136.218.138.218.137.220,135.
219, 135,220, 134,221, 133,221, 123

DATA219, 127,219, 126,220, 126,220, 127

DATA26:REH CANADIAN ISLANDS
DAT!?O.149.70.150.71.151.71.153.74.151.72.155.72.156.
70, 158,70, 159,67, 162
511&56.161.64.181.63.162.64.164.63.160,65.159,88.158.
69, 157,68, 156,69, IS5
DATAES.154.89.153.66.153.68.154.86,152.68.150.89.150
DATAIB
DATQBB.165.38.185.39.166,70,165.71.167.?2‘168,72.188,
73, 169,74, 170
DITA74,171.72.170.71.169.70.170.66.169,67,167,65,167.
65, 166

39

8260
8270

8280
8290
8300
8310
8320
8330
8340
8350
8360

8370
8380
8380
8400

8410
8420
8430

8440

8450

8460
10000
10010
10020
10030
10050
10100
10108
10110

10130
10135
10140

10141
10142
10145

10147

ATOHIC

DATA13

DATA48, 162, 489, 183,50, 162,51, 161,52, 162,53, 163,54, 163,
55, 164,53, 166,52, 165

DATAS1, 164,50, 164,489, 165,47, 163
DﬁTA2.44.183.45.163.48.165

DATA1,53, 167,55, 168

DATA1,586, 166,59, 170

DATA1,58, 166,59, 187

DATA1,61, 166,62, 167

DATA2,862,170,64,170,65, 171

DATA1,70, 163,71, 163

DATA10,95, 148,96, 147,99, 149, 98, 150,97, 149, 96, 149, 96,
150,95, 148, 96, 148,97, 148,98, 149

DATAS, 224, 33, 228, 36, 226, 35,224, 37,224, 34, 223,33
DATA3,243,77,244,77,246, 79,244, 80
DATA4,252,71,253,70,253,73,252,73,252,72

DATA13,215, 108 215, 101,218, 100,217, 100,216,99, 217,99,
218,98,217,97,220,98,218,96,220,96,218,94,218, 92,213,
94

DATA3,219,94,221,92,221,93,220,94

DATAZ2, 180,91, 180,94, 181,92

DATAS, 38, 107,39, 108, 43, 107, 44, 106,43, 105, 43, 106

40, 107

DATAS, 38, 107,39, 108,43, 107,44, 106,43, 105,43, 108,

40, 107

DATAO

DATAO

REM**kINSTRUCTIONS*%xx

GOSUB 12000:SPEED235

PRINT®@11, 10; "HELLO SUPER-HERO"

PRINT@2, 12; "DO YOU REQUIRE INSTRUCTION?";:A=INCH

IF A=89 OR A=121 THEN 10100:ELSE SPEED255:RETURN
GOSUB 12000

PRINT

PRINT'TIME IS RUNNING OUT FOR MANKIND. THERE IS A
STATE OF EMERGENCY AT SELASCALE THELARGEST NUCLEAR
POWER STATION IN THE * 10120 PRINT*"WORLD. THE CORE
HAS GONE °’CRITICAL’® AND SHOULD HELTDOWN OCCUR THERE
WILL RESULT,A CHAIN REACTION THAT WILL RIP APART
PRINT"THE EARTHS CRUST LEAVING NO MAN ALIVE TORECORD
HIS FOLLIES.*

PRINT

PRINT"YOUR MISSION SHOULD YOU WISH TO ACCEPT 1IT, IS
TO REHOVE THE RODS FROM THE CORE OF THE REACTOR

BEFORE IT*S TOO LATE
FOR F=1T01200:NEXTF:GOSUB12000
PRINT

PRINT"YOU CANNOT ENTER THE AREA, SO YOU MUST GUIDE &
"REMOTE’ TO EACH ROD. BEFORE A ROD CAN BE WITHDRAWN
ITS CODE WHICH 10146 PRINT"WILL BE FLASHED ON THE
LOWER RIGHT OF YOUR MONITOR HUST BE ENTERED
CORRECTLY. "

PRINT:PRINT"EACH ROD MUST BE WITHDRAWN IN THE CORRECT
SEQUENCE. "

40

12000

12020

ATOHIC

PRINT"DUE TO THE UNSTABLE NATURE OF THE AREA SHOULD

THE REMOTE CROSS ITS TRAILING CABLES OR TOUCH THE

WALLS, HELTDOWN"

PRINT'WILL BE THE INEVITABLE RESULT. "

PRINT:PRINT"TIHEE IS CRITICAL YOU HAVE 1000 HALF-

LIFEPERIODS —&GOOD LUCK!'®

FOR r=1m12w=mrr:nasuazzooo:rzlmu.4;-voun

CONTROLS ARE"

PRINT21S,.8: “g*:819 . 8;:"F":814, 103 LXK L-k"

:@819, 12;*S":819, 14:"D"

FOR r=rroxzno:m=rnnea,:7;-ncn-': DELAY PRESS A

KEY NOH.."s

A=1NCH:SFEEDZS5

RETURN

EEN PRETTY TUEE

vOICE 0.31,10.3.90.50

m-ﬁﬁ—m—&—m-s-;s—bswba7—cs-£a—bs5c7—
w—ﬁ-mmscs—ﬁ:?m—bm—m-rs-

TENFOC S

mc um-m' I‘zl-- -ll

rPSG7.87TF

CLS40:-BCOLZ-TCOLe, 1S-PRINT®13, 15 *ATONIC RESCUE":
TCOLIS.2
EETUEX

CODE

41

HORSE TRAINER

For those just learning Morse code or for those who would
like to brush up on their knowledge 'MORSE TRAINER® is well

worth

10
20
30
40

50

typing in.

REM MORSE TRAINER

REH BY DAVE WEST

REM INITIALIZE

DIH M$(47):FOR X=1 TO 47:READ M$(X):NEXT X
E=10:P0=125:P1=0:F=1000 '

PSGO,PO:PSG 1,P1:PSG 1,0:PSG 8, 15:PSG 7, 127

70 ON ERR GOTO 330

GOTO 1040

90 REM SUB ROUTINES

180
180

CH$=INCH#$:IF CH$="" THEN 100:REM READ KEY BOARD
RETURN

PSG 7,120:FOR PS=1T0200:NEXT:P5G7, 127:RETURN

REM PRINT ROUTINE

FOR K=1 TO LEN(IS$)

P$=MID$(I%,K, 1) :PRINT P$;

R=ASC(P$)-43 :

GOSUB 200

NEXT K

RETURN

REH SOUND ROUTINE

IF E=—-11 THEN FOR Z=1 TO 4000000/EA4:NEXT Z:RETURN
FOR M= 1 TO 6

SD=VAL(MID$(M$(R),H, 1))

IF SD=0 THEN 280

PSG 7,120:FOR X=1 TO SD 4.5:NEXTX

PSG 7,127

FOR Z=1 TO 20:NEXT Z

NEXT M:FOR Z=1 TO 1000000/EA4:NEXT Z:EETURN

REH PROSIGN KEY

PRINT" »

PRINT"<,>,@,=Represent AR KN AS BT Respectively":PRINT
RETURN

REM GET CHOICE

CLS:PRINT@11,0, "HORSE TRAINER"

PRINT@8B, 15" -

PRINT:PRINT" press L=ltrs, F=fgrs, A=all":PRINT
PRINT" press R for repeating message":PRINT
PRINT" press T for morse typewriter":PRINT
PRINT" press P to change pitch ("3iF;"hz)":PRINT
PRINT" press Q to quit"

PRINT@E, 18; "PLEASE SELECT YOUR CHOICE";:GOSUB 100
IF CH$="L" OR CH$="F" OR CH$="A" THEN 480

IF CH$="T" THEN 6860

IF CH$="R" THEN 7860

IF CH#$="P" THEN 910

IF CH$="Q" THEN 980

GOSUB 120:GOTO 330

REM RANDOM FIVE CHR GROUPS

CLS:PRINT" RANDOM GROUPS"

PRINT"<RET> to quit or any other to hold"

42

MORSE TRAINER

510 IF CH$="A" THEN GOSUB 290

520 T$=",5./0123456789:;<=)?GABCDEFGHIJKLHNOPQRSTUVHXYZ"

530 GF=0

540 I$="":FOR X=1 TO S5

550 GP=GP+1:IF GP>=31 THEN PRINT" s iGP=0

560 IF CH$="L" THEN R$=HID${T$,RNDI28)+22.IJ

570 IF CH#$="F" THEN R&:HIDS(TS.RND(10)+5.1J

580 IF CH$="A" THEN R$:HIDIT,RND(47)+1.1)

590 IF R$=" " THEN 560

600 1$=1%+K3$

610 KY=KBD:I1F KY=13 THEN GOTO 330

620 IF KY<>0 THEN GOSUB 100

630 NEXT X :1s=I%+" "

640 GOSUB 130

650 GOTO 540

660 REM TYPE HORSE)

870 CLS:PRINT"TYFPE FOR IMHMEDIATE MORSE QUTPUT" : PRINT"
PRESS <RET> TO QUIT "

680 GOSUB 290

690 GOSUB 100

700 LET R=ASC(CH$)-43

710 IF R=—30 THEN 330

720 IF R=—11 THEN PRINT" *::GOTO 630

730 IF B=2 OR k<1 OR E>47 THEN GOSUB 120

740 PRINTCHS::CH$=""

750 GOSUB 200:GOTO 690

760 REM REPEATING HESSAGE

770 CLS:PRINT" REPEATING MESSAGE"

780 GOSUB 290:PRINT"PRESS <RET> TO QUIT"

790 INPUT "ENTER MESSAGE ";1%

800 FOR K=1 TO LEN(I®)

810 R:ASC(HIDQ(I&.K,I))—43

820 IF R=—11 THEN 840

830 IF R=2 OR R<1 OR R>47 THEN GOSUB 120

840 NEXT K :

850 FOR K=1 TO LEN(I$)

860 PRINT MID$(I$,K,1)5

870 R:ASC(HID$(I$,K,1))*43=GOSUB 200

880 KY=KBD:IF KY=13 THEN 330

890 NEXT K

900 FOR K=1T0200: NEXT K:PRINT" "; :GOTO850

910 REM CHANGE PITCH

920 CLS:PRINT"PITCH CHANGE"

930 INPUT "INPUT frequency 500 - 3000hz ":iF

940 IF F<500 OR F>3000 THEN 930

950 TP=2ES!(16#F):P1ZINT(TP/256]:PO:TP—Pi

960 PSG O,PO:PSG 1,Pl

870 GOTO 330

880 REM QUIT

990 CLS:END

1000 REM MORSE DATA

1010 DATA 131313.,111111,31131,33333.13333.11333,11133,
11113,11111.31111.33111,33311.33331.333111,313131,

2 -~ q

----- a adn a4

1020
1030
1040

1050
1060

MORSE TRAINER

DATA 113311:13111:13,3111,3131:311,1%,1131,331, 1111,
11, 1333,313,1311,393,31,333, 1331,3313, 151, 111, 3, 113,
1113,133, 3113 :

DATA 3133,3311

CLS:PRINT" MORSE TRAINER DEMO";:@9,21;"PRESS ENTER FOE
MENU":PRINT®0, 2;:

I$="A PROGRAM WRITTEN BY DAVE WEST 1 JUL 86."

GOTO 850

RUBIKS CUBE

This version of Rubiks cube on the Einstein was uwritten for
the U.K.E.U.G. by Peter Heffernan.

10 HAGCO:SPRITEOFF:-CLS:=BCOLO
PRINTCERES{(20):REN Turz cursor off
FREINTSES, 3; "ZIifEss s s s S SEETLTXIXZTRXL "
PRINTSS 4:"x IESTRUCTIONS x"
PRINTSS S:'s FOR THE CUBRE ="
FRINTES, 6;: "IEitsEss s s s RS EETTIRERER"
FPRINTE: 6:"0DNLY THREE FACES OF THE CUBE WILL"
PRINTES. 9:"BE DISPLATED AT ANY TINE®
PRINTES. 10;"THE LETTERS ARCUND THE CUBE INDICATE THE
BOW TO BE ADJUSTED.AFTEE TEE FRONT (WHAT HOVE) YOU
INPUT THE"
PRIETES, 13:"LETTER OF YOUR C8S0ICE,AT WHICH POINT
YOU WILL BE ASEED FOR &4 DIRECTION ie UP ¢ DOMN:
RIGHT] LEFTL."
130 PRINTES_17;:"BOTE THE DIERECTION KEYS ARE NOT
THE CURSOR KEYS*®
120 PRINTES_Z1:"PRESS ANY KEY TO START"
130 E=INCH
140 IFE>OTHER GOTO1S0
150 ORIGINO.O
160 HAGO
170 REM Set up initial colours
180 Fl=15=F2=15=F3=15=F4=15=F5=15=F6=15:F7=15:F8=15
:F9=15
190 L1=7=L2=7:L3=7=L4=7:L5:T:L6:7:L7=7:L8=7:LS=7
200 Rl=4=R2=4:R3=4:Ri=4:RS:4=RB=4:R?=4=RB=4:RS=4
210 Sl=12:32=12:SS=12=S4=12:55=12:SG=l2:S7=12=SB=12359=12
220 Tl=10:T2=10:T3=10:T4=10:T5=10=T6=10=T7=10=T8=10:T9=10
230 Bl=6:32=6:BS:S:B4=6=55=6=BS=8=B7=6=BB=6:BQ=B
240 REM Set up alpha letters around the cube
250 SPRITE1,84,88,3,65 -
260 SPRITEZ2,84,57,5,66
270 SPRITE3,84,28,9,67
280 SPRITE4, 100,8,11,68
290 SPRITES, 127,8,6,69
300 SPRITES, 154,8, 15,70
310 SPRITE7,177,12,4,71
320 SPRITES, 193,24,12,72
330 SPRITES, 209,36, 14,73
340 CLS
350 PRINT@1,9;"PRESS"
380 PRINT®1,11;"(R)TO RESET"
370 PRINT®1, 13;"(X)TO EXIT"
380 PRINT@1,15;"(T)TO TURN"
390 PRINT@1, 16 "WHOLE CUBE"

8§ BBaBLLel

400 Q=0

410 REM Draw and colour front face
420 GCOLF1

430 ORIGINO,O: GOSUBB20

440 GCOLF2

450 ORIGIN27,0:GOSUBB20

RUBIKS CUBE

This version of Rubiks cube on the Einstein was uwritten for
the U.K.E.U.G. by Peter Heffernan.

10 HAGCO:SPRITEOFF:-CLS:=BCOLO
PRINTCERES{(20):REN Turz cursor off
FREINTSES, 3; "ZIifEss s s s S SEETLTXIXZTRXL "
PRINTSS 4:"x IESTRUCTIONS x"
PRINTSS S:'s FOR THE CUBRE ="
FRINTES, 6;: "IEitsEss s s s RS EETTIRERER"
FPRINTE: 6:"0DNLY THREE FACES OF THE CUBE WILL"
PRINTES. 9:"BE DISPLATED AT ANY TINE®
PRINTES. 10;"THE LETTERS ARCUND THE CUBE INDICATE THE
BOW TO BE ADJUSTED.AFTEE TEE FRONT (WHAT HOVE) YOU
INPUT THE"
PRIETES, 13:"LETTER OF YOUR C8S0ICE,AT WHICH POINT
YOU WILL BE ASEED FOR &4 DIRECTION ie UP ¢ DOMN:
RIGHT] LEFTL."
130 PRINTES_17;:"BOTE THE DIERECTION KEYS ARE NOT
THE CURSOR KEYS*®
120 PRINTES_Z1:"PRESS ANY KEY TO START"
130 E=INCH
140 IFE>OTHER GOTO1S0
150 ORIGINO.O
160 HAGO
170 REM Set up initial colours
180 Fl=15=F2=15=F3=15=F4=15=F5=15=F6=15:F7=15:F8=15
:F9=15
190 L1=7=L2=7:L3=7=L4=7:L5:T:L6:7:L7=7:L8=7:LS=7
200 Rl=4=R2=4:R3=4:Ri=4:RS:4=RB=4:R?=4=RB=4:RS=4
210 Sl=12:32=12:SS=12=S4=12:55=12:SG=l2:S7=12=SB=12359=12
220 Tl=10:T2=10:T3=10:T4=10:T5=10=T6=10=T7=10=T8=10:T9=10
230 Bl=6:32=6:BS:S:B4=6=55=6=BS=8=B7=6=BB=6:BQ=B
240 REM Set up alpha letters around the cube
250 SPRITE1,84,88,3,65 -
260 SPRITEZ2,84,57,5,66
270 SPRITE3,84,28,9,67
280 SPRITE4, 100,8,11,68
290 SPRITES, 127,8,6,69
300 SPRITES, 154,8, 15,70
310 SPRITE7,177,12,4,71
320 SPRITES, 193,24,12,72
330 SPRITES, 209,36, 14,73
340 CLS
350 PRINT@1,9;"PRESS"
380 PRINT®1,11;"(R)TO RESET"
370 PRINT®1, 13;"(X)TO EXIT"
380 PRINT@1,15;"(T)TO TURN"
390 PRINT@1, 16 "WHOLE CUBE"

8§ BBaBLLel

400 Q=0

410 REM Draw and colour front face
420 GCOLF1

430 ORIGINO,O: GOSUBB20

440 GCOLF2

450 ORIGIN27,0:GOSUBB20

RUBIKS CUBE

460 GCOLF3

470 ORIGINS4,0:G0SUB620
480 GCOLFS

490 ORIGINZ7,-31:G0SUBG20
500 GCOLF4

510 ORIGINO,-31:GOSUBBZ0
520 GCOLFe6

530 ORIGINS54,-31:G0SUB6B20
540 GCOLF7

550 ORIGINO, -62:GOSUBB20
560 GCOLF8

570 ORIGINZ27,-62:G0SUBB20
580 GCOLF9

590 ORIGINS4,-62:G0SUB620

600 ORIGINO,O

610 GOTO650

620 DRAWS3,96T0113,86T0113,72T093, 72T093,96:FILL100, 80
630 RETURN

640 REHM Draw and colour top face

650 GCOLT7

660 ORIGIN-6,2:G0SUBB40

6870 GCOLT8

680 ORIGIN22,2:G0SUB8B40

690 GCOLTS

700 ORIGINS0,2:G0SUB840

710 GCOLT4

720 ORIGINS8, 16:G0OSUB840

730 GCOLTS

740 ORIGIN3G, 16:G0SUBB40
750 GCOLTe

760 ORIGINBS, 16:G0SUB840
770 GCOLT1

780 ORIGINZ3,30:G05UBB40
790 GCOLTZ2

800 ORIGINS1,30:G0SUBB40
810 GCOLT3

820 ORIGIN79,30:G0SUB8B40

830 ORIGINO,0:GCOL7:G0TO870

840 DRAW10Z, 102T0112,112T0132,112T0122, 102T0102, 102
:FILL110O, 108

850 RETURN

8680 REM Draw and colour side face

870 GCOLS1

880 ORIGIN 5,-2:G0SUB1060

890 GCOLS4

S00 ORIGINS,-33:G0SUB1060

S10 GCOLsS7

S20 ORIGINS,-685:G05UB1060

8930 GCOL S2

940 ORIGINZ20,11:G0SUB1060

850 GCOL S5

S60 ORIGIN20,-20:G0SUB1060

S70 GCOLS8

S80 ORIGIN20,-51:G0SUB1060

46

990
1000
1010
1020
1030
1040
1050
1060

1070
1080
1080
1100
1110
1120
1130
1140
1150
11680
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

1310

1320
1330
1340

1350

1360
1370
1380
1380
1400
1410
1420
1430
1440

1450
1460

RUBIKS CUBE

GCOLS3
ORIGIN35,26:G0SUB1060
GCOL 56
ORIGIN35,-6:G0SUB1060
GCOLS9
ORIGIN35,-37:G0SUB1060

ORIGINO,0:GOTO1080
DRAHIGQ.100T0169.76T0178.85T0378.108T0169.l00
:FILL175,90

RETURN

PRINT®1,2; "WHAT HOVE(A-I)"

P=INCH
IFP=66THEN1370:REHM
1FP=70THEN1880: REHM
IFP=69THEN1760: REH
1FP=72THEN2160:REH
IFP=68THEN1630:EKEH
1FP=7 I THEN2020:REH
IFP=65THEN1230:EEH
1FP=67THEN1490:KEH
IFP=73THEN2280:REX
1FP=B4THEN2440:KEHN BOVE

IFP=B8THEN2420:EEH EXIT FROG

IFP=82THEN CLS:GOTOISO:-REN RESET R

GOTO1090

REN A MOVE

PRINT®1,3;: "LEFT(L[)OR RIGHT(I)"

S=INCH

1FS=91THEN 1330

1FS=93THEN12S0

GOTO1250

REH RIGHTA
SHAPT?.TI:SHAPTI,T3:SHLPT3.TS:SHlPTG.TZ:SBAPTZ.TS
:SWAPTB, T8
SH&PFI.LS=SUAPL3,R3=SBRP23.SI:SUIPFZ.LZ:Si&PLZ.RZ
:SH&PR2.SZ=SU&PF3.L1:SUAPLI.R}:SUAPII.S& g
1FQ=5THEN 1460ELSE340

REM LEFT A
SH&PT?.TQ:SH&PTQ,T3=SH&PT3.T1=SUAPTB.TS:SH&PT6.T2
:SWAPT2,T4
SH&PFL.SI=SH&P51.R3:SHAPR3.L3:SHAPF2.52=SUQP32,R2
:SHAPRZ.L2=SU&PF3.S3=SH5PS3.Rl:SUlPRl.Ll
IFQ=STHEN 1430ELSE340

REM B HMOVE

PRINT@1,3; "LEFT([)OR RIGHT(1)*

S=INCH

1FS=91THEN 1430

IFS=93THEN 1460

GOT01390

REM LEFT B
SHﬂPF4.54:SHAP84.RS:SHAPBS,LS:SHA?FS.SS:SSAPSE,R5
:SHAPRS,LS:SHAPFS.SS:SH&PSG.R4:SHAPR4,L4
IFQ=5THEN 1550ELSE340

REH RIGHT B

MOVE
HOVE
HOVE
HOVE
HOVE
BOVE
HOVE
HOVE
BOVE

WHmO»O0 X M@

47

1470

1480
1490
1500
1510
1520
1530
1540
1550
1560

1570

1580
1590
1600

1810

16820
1630
16840
1850
1660
1870
1680
1690

1700

1710
1720
1730

1740

1750
1780
1770
1780
1790
1800
1810
1820
1830

1840
1850
1860

1870
1880
1890

RUBIKS CUBE

SWAPF4,L6:SWAPLE,E6:SWAPRE, S4:SWAPFS5, L5:SWAPLS, ES
:SWAPRS,S55:SWAPF6,L4:SWAPL4,R4:SWAPR4,56
IFQ=5THEN 1590ELSE340

REM C HOVE

PRINT@1,3; "LEFT(L)OR RIGHT(1)"

S=1NCH

IFS=91THEN1550

IFS=93THEN 1590

GOTO1380

REM RIGHT C
SWAPB7,B9:SWAPBS,B3:SWAPB3,B1:SWAPBS8, B6: SWAFPBE, B2
:SWAPB2,B4
SWAPF7,S7:SWNAPS7,R9:SWAPR9,LO:SWAPF8,58:SWAPS8E, KE
:SWAPRS8,L8:SWAPF9,S59:SWAPSS,R7:SWAPR7,L7

GOTO 340

REM LEFT C
SWAPB7,B1:SWAPB1,B3:SWAPB3,B9:5WAPB4,B2:SWAFPBZ, BS
:SWAPBG, B8
SWAPF9,L7:SWAPL7,R7:SWAPR7,59:SWAPF8,LB8:SWAPLSE,RE
:SWAPRSB,S8:SWAPF7,L9:SWAPL9, RS: SWAFRS, 37

GOT0340

REH D HOVE

PRINT®1,3; “UP(*)OR DOWN(:)"

S=INCH

IFS=94THEN 1720

IFS=58THEN 1630

GOTO1650
SWAPL7,L1:SWAPL1,L3:SWAPL3,L9:SWAPL4,L2:SWAFL2,LE
:SWAPLG, L8
SWAPF1,T1:SWAPT1,R7:SWAPR7,B7:SWAPF4,T4:SWAFT4, k4
:SWAPR4,B4:SWAPF7,T7:SWAPT7,R1:SWAPR1,B1
IFQ=5STHEN1820ELSE340

REM D UP
SWAPL7,L9:SWAPL9,L3:SWAPL3,L1:3SWAPLS8,LE6:SWAFPLE, L2
:SWAPL2,L4
SWAPF1,B7:SWAPB7,R7:SWAPR7,T1:SWAPF4,B4:SWAFPB4,E4
:SWAPR4,T4:SWAPF7,B1:SWAPB1,R1:SWAPRL,T7
IFQ=5THEN 1850ELSE340

REM E HOVE

PRINT@1,3;"UP(*)OR DOWN(:)"

S=INCH

IFS=84THEN1850

IFS=58THEN 1820

GOTO1780

REM E DOWN
SWAPF2,T2:SWAPT2,R8:SWAPRS, B8:SWAPFS5, TS:SWAFTS, ES
:SWAPRS, B5:SWAPF8, T8:SWAPTS8, R2: SWAPR2, B2
IFQ=STHEN1980ELSE340

REM E UP
SWAPF2,B8:SWAPBS8,R8:SWAPR8, T2: SWAPFS, BS:SWAFES,ES
:SWAPRS, TS:SWAPF8,B2:SWAPB2,R2:SWAPRZ, T8
1FQ=5THEN 1940ELSE340

REH F HOVE

PRINT@1,3; "UP(A)OR DOWN(:)"

48

RUBIKS CUBE

1800 S=INCH

1910 1FS=94THEN 1940

1820 IFS=5B8THEN1980

1930 GOTO1900

1940 REH F UP

1950 SWAPS7,S9:SWAPSS,S3:SWAFS3,S51:SWAPSS,56:SEAPSE,52
:SWAFPS2,54

1960 SWAPF3,B9:SWAFES,ES:SWAPES_ T3:SEAPFE,B6:SWAPBG,RE6
:SWAPRE,TE:SEAPFS, E3:SHAFES, E3:-SHAPE3, TS

1970 GOTO 340

1880 REN F DOWN

SEAPST,S1:S8APS1,S3:SEAPS3, S3:-SEAPS4, S2:SWAPS2,S6

:SWAPSE.S8

SEAFPF3,T3:SEAPTS, ES-SEAFES. B9:-SEAFFS, TS:SEAPTE, k6

:SUAPRS . BE-SEAFFS, TS-SEAPTS, E3:-SEAPR3,B3

GOTO 340

EEN ¢ BOWE

PFRINTEL. 3: "TRI™ IR DOSmE = 1™

S=INCH

g

!

SHArs1. . S-SHarRs, LT -SeaFLT, TT-SksPS4 ., B8:SEAPBS, L4
~SNAFLA. TE-SPST, ¥T-SNarsT . L1 -SEarL1. 19

Z130 SHAFFT.FI-SHuPVFE FI3-ShUPF¥F3. F1l:-SEAPFE, FE:SEAPFG, F2
Z140 SEAPS1.TT-SHaPTT. LT-SSLFLT . BS-SEArS4, TE:-SEAPTS, L4

2250 REM H DOWN

2260 SEAPSZ,T4:SWAPT4,LB8:SWAFLS,BS:SWAPSS,TS:SWAPTS,LS
:SWAFLS,BS:SWAFPSS, T6:SWAFTS,L2:SWAFL2,B4

2270 GOTO340

2280 I MOVE

2290 PRINT®1,3;*UP(”~)OR DOWN(:)"

2300 S=INCH

2310 IFS=94THEN2340

2320 IFS=58THEN2380

2330 GOTO2300

2340
2350

2380

2370
2380
2380

2400

2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530

RUBIKS CUBE

REH 1 UP
SWAPR7,R1:SWAPR1,R3:SWAPR3,R9:5SWAPR4,R2:5SWAPR2,RE
:SWAPRGE, R8
SWAPS3,B3:SWAPB3,L9:SWAPLIS,T1:SWAPS6,B2:5WAPB2Z, L6
:SWAPLE,T2:SWAPSS,B1:5SWAPB1,L3:5SWAFPL3, T3

GOTO340

REM I DOWN

SWAPR7,RS:SWAPRS, R3:SWAPR3,R1:SWAPR8, R6:SWAPRE, R2
:SWAPRZ, R4
SWAPS3,T1:SWAPT1,L9:SWAPLS,B3:5SWAPS6,T2:SWAPT2,L6
:SWAPLE,B2:SWAPS9, T3:SWAFT3, L3:5WAFPL3,B1

GOTO340

REH X (EXIT PROG)

CLS:SPRITEOFF:RST:BCOL4:END

REM TURN CUBE

Q=5

PRINT@1,3; "LEFT(L)OR RIGHT(1)"

PRINT@1,5; "UP(A)OR DOWN(:)"

S=INCH

IFS=91THEN1330

1FS=93THEN 1290

IFS=94THEN1720

1FS=58THEN 16390

GOT02460

WHA . MOVE (A-I)

V'Z 27 /
V7 7 7 ‘

(R)TO RESET
(TXTO TURN
== NN ‘

50

DISCS

Discs are known as random access devices, you can compare a
disc to a record player, the head of the disc being the
needle of the record player. Data is read serially i.e. one
bit after another, just like the stylus of the record player
following the groove in the record. (Disc tracks are of
course concentric rings unlike the spiral grove in a
record.) The random access refers to being able to position
the read/write head anywhere on the disc, just as you can
select any track on the record by moving the stylus arm, any
disc track can be selected by moving the disc head. This 1is
what makes discs so much quicker than cassette.

EINSTEIN has a capability of using four drives, the Teason
only four drives can be used is due to the design of the
FDC, (Floppy Disc Controller).Two imtermal 3% drives can
fitted and external drives can be used via the external
expansion port. Any external drives require their own power
supply, the data cabling being commected %o HOO4 on the rear
of +the machine. Any Shugartt interface drive, 3. 3.5, =or
5.25" will work. (Shugartt interface is a standard that
defines the signals used by the drive aand the FDC). The
drives are run in a daisy chain comfiguration. which Rmeans
data is sent to all drives on a commom lime, the daisy
chain, and a select signal gates the data io 1he selected
drive. The same principle applies to a read from disc. This
of course means that only one drive cas be iz use at any
moment in time.

The installed 3" drive is single sided, 40 z=rack with the
media being reversable and used on both sides. The use of
double sided or 80 track drives requires aa upgraded DOS
such as System 5 from Crystal Research. The recording media
used is a magnetic oxide coating omn a circular flexible
disc, hence floppy disc. When in use the disc is im contact
with the read/write head due to slight pressure from a head
pad that rests on the opposite side of the disc, (With
double sided discs two heads are used). Data is written to
the disc in a binary pattern whem a curreat is passed
through the head magnetising the disc media. & disc read
uses +the magnetic changes on the media o create small
current pulses in the disc head which are converted back to
binary data.

The actual media is enclosed in a plastic case which gives
good protection to the disc itself, and offers a rigid
nounting to the drive. On the edge of the case that is
inserted into the drive is a small notch, this is used by
the drive to indicate whether side A or B is in use, via the
red or green LED, (Light Emitting Diode), on the front of
the drive.

51

DISCS

Under the control of the FDC the disc head moves in or out
along the disc surface as the disc rotates. The position of
the head is controlled by a steper motor. . This . 4s . &
precision motor that moves in Steps, each step being a track
on +the disc surface. Each track on the disc is divided into
10 portions known as sectors.

If you examine a 3" disc, near to the center of the
protective case is a small hole. The disc media also has a
small hole, this is the index hole, a sensor within the
drive uses this hole to output a pulse for each revolution
of the disc creating the index pulses. These pulses are used
by the FDC to check the drive is ready and as a refrencf
point for positional information. A special pattern is
written on the disc to define between sectors, the FDC can
detect this sector pattern. By combining the information
from the index pulses, the track number from the steper
motor and the sector pattern the position of the disc head
can be calculated. This type of sectoring is called soft
sectored as it is the software that is formatting the tracks
into 10 sectors.(Hard sectored discs have as many index
holes as sectors).
Before we actually go on to use our discs it is good

practice to use the following rules;

1..DO NOT SWITCH ON OR OFF WITH A DISC IN THE DRIVE.

2..D0 NOT EJECT, OR INSERT A DISC WHEN THE BUSY LIGHT IS

ON.
3:.D0O NOT OPEN THE PROTECTIVE CASING.
4..DO NOT STORE DISCS NEAR TO STRONG HAGNETIC FIELDS, SUCH
AS HI-F1 SPEAKERS.
5..DO MAKE A COPY OF ANY SYSTEM DISC, TAKE REGULAR
SECURITY COPIES OF IMPORTANT DATA DISCS.

All +the above recommendations will help to keep your discs
in good working order and will avoid corruption as far as is
possible. Provided security copies are available not too
much work will have to be re-done to recover if a corruption
happens. Remember Murphy’'s Law; "If it is possible, it will
happen”. So be warned!

As we are using soft sectoring a new disc requires
formatting before use, a simple procedure using the BACKUP
utility. Formatting the disc writes the sector pattern,
writes the character ES across the storage area of the disc,
and copies the system DOS to tracks 0&1. The capacity of the
3" disc before formatting is 250k bytes. (Remember 1k=1024
bytes). After formatting the usable storage is 188K bytes,
so where does the missing 62k go? As stated before there are
40 tracks each divided into 10 sectors. Each sector holds
512 bytes giving 40%10%512=200k bytes storage, 50k bytes
being used for the soft sectoring. The fist two tracks on
the disc are occupied by the DOS taking 10k bytes, SO0 now we
are down to 180k. 2k of the third track is wused for
directory entries, leaving 188K for storage of data.

52

DISCS

Each directory entry uses 32 bytes giving a maximum of 64
DIR entries, (B4%x32=2Zk).
We can examine a directory entry by inserting our backup
copy of the master disc and doing the following. (Use a copy
of the system disc as the following examples could corrupt
the disc in use)

1..Load the disc

2..H0S<E>

3..R 8000 8800 Q002Z<E>

4,.T 8000 BOI9F<E>

The conmmand R will read into memory from disc, the data is
read into location 8000H to 8800H from track 2 sector 0. ie
the 2K directory is now in memory. Using the tabulate
command T we can examine the first five DIR's ;

XBAS.COM, BACKUP.COM, COPY.COM, LOGO.COM, LOGO.COH

The disc DIR bytes are a followus:

BYTE

@ 5108 -4 011 o A2 31314 15 : 16-31 :
USER FILE:EXTENSION:EXTENT:NOT :128 BYTE:2k SECTOR BLOCK :
:AREA:NAHE: : :USED :RECOEDS :LOCATIONS :

The DIR entry is copied into memory when the file is loaded
and +the information is used to form a File Control Block,
FCB. Although the DIR entry is 32 bytes long, 36 bytes are
used by the system when a file is in memory. These extra 4
bytes are only needed when the file is active, and therefore
do not need to be held on disc. They are as follows; Byte 32
holds the record nubef of the next 128 byte record to be
used if sequential access is in operation. Bytes 33 and 34
are used for holding the random record number when using
random access files, the last byte is an overflow indicator.

The first byte of the FCB is the user area, this is always
00 as XTAL DOS does not implement user areas. The next
eleven bytes should be quite familiar being the file name
and extension, the file name is filled with spaces if less
than eight bytes long. Byte 12 is the extent and is used to
distinguish between FCB’'s for large files that use more than
one FCB e.g. LOGO.COM. Byte 15 is the number of 128 Dbyte
records, for XBAS 7A%x128=15616 bytes. The remaining bytes
indicate the actual location of the file in 2k sector
blocks.Each block occupies four sectors, (4%512 bytes = 2k).
The memory copy of the FCB is updated as the file is altered
and this FCB is written back to disc on saving the file.
XBAS is on blocks 01-08 giving a total block size of 16k.

From this it can be seen that the minimum disc space
allocated to a file is 2k bytes. The first block is track
02, sector 04 to track 02, sector 07.The first block of XBAS
can be loaded into memory from HMHOS by:

1..R 8000 8800 0402<E> 2..T 8000 8800<E> (800H being 2k)

53

DISCs

Holding down the break key will stop the display scrolling
and escape will re-enter MOS. To work out how the disc block
number converts to track and sector use the following
formulae; convert +the block number from HEX +to DECIHAL,
multiply by 4, divide by 10 and add 2. Bx4/10+2. The whole
number is the track and the remainder the sector.

After formatting a new disc the directory sectors contain
the character ES5. It is this character in byte 00 of the FCB
that is wused +to check whether a file exists .To examine
this, find +the first DIR entry, XBAS, if the copy of the
master disc is being used, and:

1..ERA XBAS.COM<E> 2..DIRKE>
The file XBAS.COH should not be displayed, now do:

1..MOS<E>

2..R 8000 8800 0002<E>

3..T 8000 BOSF<E>

The first byte of the first DIR entry is now ES5 , replacing
the number 00 that was originally there. The file is still
present on disc but because the DIR entry is not valid the
system cannot access the file. If we now do:

1..H 8000<E> 4. .Y<E>

2..00.<E> S5..DIR<CE>

3..W 8000 8800 0002<E>

XBAS should now be showing in the directory. It is only
possible to regain files in total if no disc writes have
occured on the sector blocks originally allocated to the
file. Also if the FCB is overwritten the only way to recover
files is by reading all the sector blocks and examing the
contents for the file, presuming you can recognize what to
look for!

It is most likely that at some time the DOS on a disc will
become corrupt. A common cause is a mains supply spike. One
solution 1is to reformat the disc but all data will be lost,
a better method is to rewrite the DOS tracks and see if the
disc will function normally. The reason the disc may not
work even after rewritting the DOS tracks is that some of
the sector marks are corrupt and without these +the FDC
cannot position the read/uwrite head to the required sectors.
The usual error message for a loss of DOS tracks is "DISC NO
SECTOR". To rewrite the system tracks:

1..Load a good disc

2. .MOS<E>

3..R 4000 6800<E>

4. .Remove good disc, insert corrupt disc

S..W 4000 BB00<CE>

The above procedure reads the system tracks from a good disc
into memory 4000H to 6800H, (remember that the system tracks
0+1 take 10k=2800 Hex), and then copies the memory image of
the DOS to the corrupt disc.

54

DISCS

Files that are not altered, or rarely changed can be Locked
so accidental overwritting will not happen. System files
such as XBAS should be locked, this is done using the DOS
command LOCK. A locked file will show in the directory
prefixed with an asterisk. The way DOS recognize that a file
is locked is contained within that file’s DIR entry. We can
examine this by doing the following:.

1..Load system disc

2..H0S<E>

3..R 8000 8800 0002<E>

4..T 8000 BOSF<E>

Memory B8000OH onwards is now displaying the first five FCB's
as in the previous example. Bytes 9-11 of the FCB are the
extension, COM for a command file such as XBAS. The Hex
representation for COM is 434F4D, the actual Hex showing in
bytes 9-11 of +the FCB for XBAS is C34F4D. XBAS on the
original disc is supplied as a Locked file, to make a locked
file B80H is added to the first character of the extension.
So for a COM file C(43H) becomes C(C3H).

STANDARD 3" DISC.

55

DISC OPERATING SYSTEHM

On switching on EINSTEIN and pressing control-break DOS is
loaded into memory, page 57 of the DOS/HOS handbook gives a
memory map of the RAM at this stage. Xtal DOS is loaded as a
CPM operating system would be. Xtal DOS uses different names
for the modules in use compared to CPM. The DMM (Dos Monitor
Hodule) equates to the CCP (Console Command Processor), the
0SH (Operating System HMHodule) to the BDOS (Basic Disc
Operating System) and the HDM (Hardware Dependent Module) to
the BIOS (Basic Input Output System), the TPA (Transient
Program Area) being used for both systems. Locations 0000 to
QOFFH are reserved for the System Parameters, and contain
jump vectors to the actual DOS, or HOS, system information,
and a buffer area for disc usage.

The TPA is the area of RAM that will hold any programs and
data that are being executed or used, it extends from
location 0100H to the start of the DHM at E100H.

The DHMM/CCP contains the routines that monitor the console,
and the DOS utilities such as DIR, ERA, etc. once a progranm
is loaded this area of RAM can be overwritten, as the loaded
program controls console activity. The DMM/CCP is reloaded
on a warm start along with the OSHM/BDOS.

The OSM/BDOS is located from ECOOH to F9FFH, and contains
the routines used to control the operation of the
peripherals.

The HDH/BIOS goes from FAOOH to the top of memory FFFFH,
containing machine specific routines that actually control
the hardware devices. The HDM/BIOS module is the one module
that will differ between CPM machines, the other routines
although not +the same should be compatible +thus enabling
software that is written under CPM to be run on all CPH
machines.

DOS MEMORY MAP, DOS 1.31.

HEX.
TOP HEHORY FFFF
BIOS/HDH
- FAOO
BDOS/0SH
ECO0
CCP/DHH
E100
TFPA
0100
SYSTEM
PARAMETERS
LOW MEMORY 0000

56

DISC OPERATING SYSTEH

The OSM/BDOS and HDHM/BIOS go together to form the FDOS (Full
Disc Operating System). If we load DOS, then enter MOS we
can examine the system parameter area of memory by:

1..T 0000 0080<CE>

The first three bytes contain C303FA hex, meaning of course
jump to location FAO3H this is the jump vector to the
HDH/BIOS warm start location. Execution from location FAQ3H
will cause a fresh copy of the DMM/CCP and OSM/BDOS to be
written into memory. The vectors to OSM/BDOS and HDH/BIOS
are also re-initialized, (locations 0000, and O0005) The
HDM/BIOS and TPA regions of memory are not altered on a warm
start. The fourth byte of the system parameters is the
I0OBYTE which holds information on the peripherals,
console,printer. Byte five contains the current user area.
The next three bytes hold the vector to the OSH/BDOS, if we
look at the first locations again:

1. .HOS<E> 2..T 0000 O0B0<E>

Location 0005 holds a jump to ECOOH this being the OSH/BDOS
entry point. The next addresses are the restart Jlocations
for RST 8 through to RST 38. The region of memory from QOSCH
is the default File Control Block (FCB) area. Details fron
the FCB, of the file to be used, from the disc directory are
entered here. The disc buffer area is from 0080H, it is here
that the command 1line tail will be stored, and any data
during disc transfers. To summarize the memory map of the
system parameter area looks like this:

TOP HEHORY HEX LOCATIONS

OOFF
BUFFER

0080
F.L.B.

005C
RESTART
AREA

0008
JUHP TO BDOS

0005
USER No.

0004
1/0 BYTE

0003
JUMP TO BIOS

0000

BOTTOH HMEMORY

b7

DISC OPERATING SYSTEH

We can explore the BIOS vectors by examining the area of
memory from FAOO as follows:

BIOS FAOO Cold Start Vector C3FASC
BI0S+3 FAO3 Warm Start Vector C3FACS
Bios+6 FAOB Console Status Vector C3FAB0
BIOS+9 FAOS Console Input Vector C3FA34
BIOS+12 FAOC Console Output Vector C3FA37
BI10S+15 FAOF Printer Output Vector C3FA3B
BIOS+18 FAa12 RS232 Qutput vector C3FAS3F
BI10S+21 FA1S RS232 Input vector C3FA43
BI10S+23 FA18 Vector to disc routines C3FA4S

If you are using a different version to DOS 1.31 it is a
simple matter to work out the locations, remembering that
the vector from location 0000 points to the second vector inm
the BIOS, (Warm Start). It can be seen that is is an easy
matter now to redirect the devices connected to the machine.
If we wanted to make the centronics printer output go to the
serial port, all that is needed is to load DOS, go back to
MOS and modify using the H command the vector at BIOS+15
(FAOF) to read the same as the vector at BIOS+18 (FA12).
Another method would be to modify the memory that is called
by the vector. This will only work for programs that use the
DOS calls to output to the peripherals, some programs
contain the code to output directly to the ports concerned
and if this is the case you cannot patch the operating
system to re-direct their output.

NOTE: Xtal DOS does not implement user areas as with a true

CPH systenm, it will only work with the user number set to
zero.

58

AUTO-BOOTING

Auto-booting is the process of loading a program and
executing it on pressing CTRL-BREAK as if loading DOS. This
is accomplished by medifying the system tracks of the boot
disc, (DOS +tracks 0+1), to load the auto-boot program and
run it.

If you normally work in BASIC then by modifying your system
disc to auto-boot XBAS, Albert will automatically come up in
BASIC. This facility is also very useful for setting the
RS232 port or programming the function keys.

When running under the control of the DOS, a part of the
operating system called the CCP, (Consocle Command
Processor), handles the monitoring of the keyboard. When you
type in a command, the CCP will process what you have input.
The CCP expects to see a DOS command or a filename, if your
input is not a valid DOS command, (DIR,ERA,DISP etc), the
CCP presumes a file name has been entered and will go off
and try to find, and load the requested program into memory
from location 0100Hex onwards.

When you typed your entry into the machine the characters
were stored in the console buffer, sometimes refered to as
the command buffer. On loading DOS the conscle buffer area
will contain ©OO0OH, and Albert will await your dinput. On
loading a DOS that has been modified the memory area of the
console buffer will be written into. Instead of containing
OOH as would be expected on first loading DOS it now
contains a file name or instruction, as per the
modification. The CCP pressume# this command has just been
input and instructs the machine to process what it thinks
has just been typed in.

Under DOS 1.31 the CCP is located from memory location E100H
to ECOOH, the conscle buffer is located at memory location
E307H and has a maximum capacity of 80H characters. You can
prove this by seeing how many characters can be typed in
before the DOS automatically looks for a file nanme, (80 =
128 Decimal). This buffer works under the same principle as
the DOS function 10, that is the first memory location in
the buffer defines the maximum amount of characters that can
be input and the second location holds the actual number of
characters that have been input.

Try this; load DOS,
MOS<E>,
M E307<E>, 01.<E>,
Y<E>:
Now try loading a program!
You can reset the buffer by using CTRL-BREAK.

59

AUTO-BOOTING

Once the DOS has loaded a program +the control of the
machines ports, i.e. keyboard etc, is handled by the loaded
program, this means you cannot modify the DOS to auto-boot
more +than one program unless the first program calls the
second, this will not usually be true for two or more .COHM
files but will work for XBAS and a second BASIC file. If you
use BASIC then modifying the system tracks to auto-boot will
save time and give a professional touch to the systen.

If you work in Basic and create a file that sets the
function keys this file can also be auto-called so we can
now automatically bring up BASIC with +the function keys
programmed. If you intend to auto-boot more than one file
the file names must be seperate# by a space, so to use XBAS
and a function key setting program called, say, KEYS, the
required input for the auto-boot program would be;

XBAS KEYS<E>.

DOS commands such as DIR can also be auto-booted as well as
programs. If you auto-boot a file or program it must be
present on the disc otherwise a NO FILE error will occur.

Below 1is a program written in XBAS that was adapted from
Einstein User Vol 2,4 that will enable you to modify your
system tracks for auto-booting. BEWARE this program is doing
direct disc writes therefore you are strongly advised to
have a copy of the disc you are modifying just in case
something goes wrong and you end up corrupting your disc.

10 REHM *%x AUTO-BOOT FOR DOS 1.31 *xxk

20 RST:BCOL1

30 CLEAR &8000

40 POKE &8000,&3E,&00,8&21,800,890,8&11,4&7F, &A9,

&01,800,800,8CF,8A4,8C9 "

S0 PRINT "AUTO-BOOT HMODIFICATION":PRINT

80 PRINT "INSERT DISC TO BE MODIFIED INTO DRIVE Q"
70 INPUT "ENTER NAME OF AUTO-BOOT PROGRAM/S ";N3
80 CALL &B00O

90 FOEK A=1 TO LEN(NS)

100 POKE &9208+A,ASC(MID$S(N$,A,1))
110 NEXT A
120 POKE &9208,4A-1
130 POKE &9208+A,0
140 POKE &800C,&AS
150 CALL &8000
160 PRINT "AUTO-BOOT HODIFICATION COMPLETE"

In the above program the DATA statements are used to write a
small machine code program that is called from within Basic.
The program reads into memory the DOS tracks, then modifies
the command buffer area and re—-writes the modified DOS
tracks back to disc. Pressing CTRL-BREAK using this disc in
drive O will now run the auto-boot modification.

60

AUTO BOOTING

The program uses ROM calls A4, disc read, and AS5, disc
write. Both ROM calls use the same parameters these beings

DRIVE No ... A Register
pDISC SECTOR ... B Register
TRACK No ... C Register

Data is then read/written intos/from memory starting from the
address held in the HL Register pair to the finish address
held in the DE Register pair.

1f we disassemble line 40 we can see these parameters being
set up.

3E 00 gzl A, Q0 :Load the A register with 0, i.e.
;use drive 0.

21 00 90 ... LD HL,.39000 :Load the HL register pair with
:address 9000hex, i.e. set up start
;address for disc operations at
;9000Hex.

LET% K9 S5 LD DE,.ASTE ;Load the DE register pair with
;address A97FHex, i.e. set up
:finish address. The DOS tracks
;being 2800H bytes in length.

01 00 00 ..-- LD BC,0000 ;Disc track 0, sector O. Physical
:location of DOS on the disc.

CF A4 css o RBT B A4 :ROM call A4, disc read.

c9 R < ;Return to XBAS.

After reading in the DOS tracks and modifying thenm, all that
is required is to change the ROM call from a disc read to a
disc write. This is done in line 150 by POKEing location
800CHex with AS and then re-calling the routine to write to
disc the modified command buffer.

SETTING THE FUNCTION KEYS3

As mentioned previously we can create a small program to set
the function keys and this can be called from the auto-boot
routine.

(Key command: Ppage 124 of the Basic reference manual)

&K,

10 KEY O, "LIST c/r"

$0 KEY 1,'cl892 e/’

30 KEY 2, "CLS40 c/r"

40 KEY 3."TCOL15.4=CLS c/r"
50 KEY 4, "DRIVEl c/r"

60 KEY 5, "LISTP Ty

70 etc.

80 NEW

Adding a NEW command to the last line will clear the progran
from Basic once it has been run.

61

AUTO-BOOTING

This program can then be saved to disc as KEYS, and called
by the auto-boot routine. As stated in the manual the c/r is
obtained by pressing the GRAPH and ENTER keys together. Any
of the screen control codes can be programmed into the
function keys by using the CHR%() command, these can be
found in the DOS/MOS handbook pages 3-5. So to program a
function key to give a text screen dump would be;

KEY O,"“CHRS(A)c/r".

This has the same effect as pressing CTRL-A.

The function key data is held in VEAM and a maximum of 128
characters can be used.

PROGRAH NOTES:;

As the Auto-Boot program stands there is no error checking,
therefore if the disc to be modified has it's write protect
tab enabled the program will appear to work but of course is
unable to write to the disc, hence no modification.

62

READ

The DISP command from DOS enables the user to display ASCII
files on +the screen, CTRL-S being used to stops/start the
display scrolling. EEAD is a small machine code utility
that enables text files to be displayed page by page or line
by line, with the option of a screen dump.

The program Bmakes use of the DOS calls, (rear of DOS/HOS
manual), to access and display a file. Pressing the space
Bar will display the next page. pressing the enter key will
display the mext line and using the escape key will dump the
screen to the primter. Aay other key will return to DOS. The
following syntax should-be used:

EEAD FILENAME.EXT<E> if READ is on the same drive as the
PrOgram or EEAD X:FILENAMF FXT<E> where X is the drive
containing the file to read.

ORG O100H PEOGEAM NOTES; READ
LOAD 4100H first checks that a
FCB:EQU SCH ;Default FCB filename has been
BDOS:EQU S ;BDOS entry given to ‘read’, this
BUFF:EQU B0H ;Default buffer is done by checking
LINE:EQU OEOOOH ;Scratchpad the default FCB at
FUNCT:EQU OEOO1H ;Scratchpad location 005C+1 Hex,
FPARAM:EQU OEOOZH ;Scratchpad (the first location
EETVAL:EQU OEOO4H ;Scratchpad at O005C Hex will be
LD A, (FCB+1) iCheck for 00 as this defines
CP 20H ;iFile name the user areal). If a
JP NZ,CONP H character other than

LD DE, IPHMESS
LD (PARAM),DE

00 is found then a
filename to ‘'read’

LD A,9 ;DOS call 8 has ©been input, and
LD (FUNCT), A H the progranm will
CALL SYSTEH H begin. If a 00 is
RET sRET TO DOS found then a message
START:LD DE,FCB H to inform the user of
CALL OPEN H the correct syntax
LD A, (RETVAL) H required is

CP 255 H displayed. The

JP Z,NOFILE 3 program makes use of
CALL READ 3 the fact that the DOS
LD HL, BUFF H will automatically
BEGIN:LD B,24 ;Line count start a FCB, (at
CALL CLS H location O00S5C Hex),
PRINT:LD A, (HL) 3 for the name of any
PUSH AF 3 file input. Having
LD A,L H typed in READ

CP 00 H FILENAME.EXT the DOS
JP Z,NEKXKT H will start a FCB for
INC HL 3 READ, find the

POP AF H program in the

CP 1AH ;EOF marker directory and f1ll
JE Z,EXIT ;Finished out the rest of the
CP OAH 3 FCB. It will then
JR Z,DEC 3 load the program into

63

OUT:LD (PARAM),A

LD A,2

LD (FUNCT),.A
CALL SYSTEH
JR PRINT
SYSTEH:PUSH AF
PUSH BC

PUSH DE

PUSH HL

LD A, (FUNCT)
LD C,A

LD DE, (PARAH)
CALL BDOS

LD (RETVAL),A
POP HL

POP DE

POP BC

POP AF

RET

DEC:DJNZ OUT
NEWPGE:LD A,1
LD (FUNCT),A
CALL SYSTEH
LD A, (RETVAL)
CP 32

JR Z,BEGIN
CP ODH

JP Z,NLINE
CP 1BH

JP Z,SCPRT
CALL CLS
EXIT:JP 0000
NLINE:LD B,1
LD A,2

LD (FUNCT),A
LD A,OQAH

LD (PARAM),A
CALL SYSTEM
LD A,ODH

LD (PARAM) A
CALL SYSTEHM
JR PRINT
SCPRT:LD A, 1
LD (PARAM),A
LD A,2

LD (FUNCT),A
CALL SYSTEH
JP NEWPGE

COMFP:LD A, (FCB+9)

CE "C*

JP NZ,START
LD A, (FCB+10)
EE"0°

JP NZ,START

READ

3
3
H
H

;System
;Subroutine

L T e T L T

iSpace bar

;Enter key
;Escape key

;Cold start

sDOS call 2 -

Screen dump

+COH file?

We we W @ W Wt W Wl @i a W0 we 9 g W s W w W wd

64

memory from location
0100 Hex and
overurite location
00SC Hex with the
details of the

FILENAME. EXT that
followed READ on the
command line. DOS

will now ’goto’
location 0100 Hex and
execute the program
READ. DOS calls, as
per the rear of the
DOS/H0S handbook, are
used throughout the
program. A ‘'system’
call is wused where
all the registers are
pushed onto the stack
before calling DOS at
location 0005 Hex,
and poped on return.
Scratchpad locations
are used to hold the
DOS function number,
any paramaters that
need to be passed to
the DOS and, any
returned values
having called DOS.
There are small
subroutines to load
the scratchpads with
the required values
and then a call to
the ’systenm’ g
subroutine is made.
To display a message
DOS function B9 is
used, the start
location of the
message is placed in
the DE register pair,
9 in the A register
and a call to 0005 is
made, (The message is
terminated with the
sign). Provided a
filename has been
given a check is made
on the .EXTension to
ensure it is not a
.COM file, if a .COH
extension is found

LD A, (FCB+11)
CP IIHI

JP NZ,START
CALL CLS

LD DE,COHMHES
CALL DISP
RET;RET TO DOS

we @s Wi owa wE s W

READ

DISP:LD A,9 ;Display

LD (FUNCT),A ;iMessage
LD (PARAH),DE H

CALL SYSTEM

EET

CLS:LD A,12

LD (PARAM),A

LD A,2

LD (FUNCT),A

CALL SYSTEH

RET

NEXT:LD DE,FCB
CALL READ

LD HL, BUFF

JP PRINT

OPEN:LD (PARAH),DE
LD A,OFH

LD (FUNCT),A

CALL SYSTEM

RET

READ:LD (PARAM),DE
LD A, 14H

LD (FUNCT),A

CALL SYSTEH

RET

NOFILE:CALL CLS ;No file
LD DE,NOFMES ;Hessage
CALL DISP H

RET H
IPMESS:DB"CORRECT FORMAT IS:
DBE"READ FILENAHME.EXTs$"
NOFMES:DB"FILE NOT PRESENTS$"

Next re

B R A T I T T T T

Open fi

e A

DOS cal

- ows

Clear screen

cord

le

1 20

COMMES:DB"TO READ A COM FILE "

DB"LOAD FROM DOS THEN "

DB" ENTER MOS AND TABULATES"

NOP
END

then function 9 is
again used to display
a message to inform
the user that READ
will not work on .COM
files. Provided all
as is well the
routine at START uses
function 15 to open
the file. The rest of
the FCB will now Dbe
completed, provided
the file is present
on disc. Having
opened the file we
can now read in a 128
byte record to the
default buffer at
location 80Hex using
function 20. The
screen is cleared by
using function 2,
consocle output, by
sending the ASCII
codes for CTRL-L, 12.
It is now a matter of
printing the ©buffer
contents to the
screen, again using
function 2. A check
is made for the end
of file marker,

1AHex, and if found
READ returns to DOS
via a jump to
location 0000, the
cold start vector.
After the first
screen has been
filled a check is
made for the codes of
the space, enter, and
escape keys. A count
is held in the HL
register pair of how

many characters have been displayed and after 80Hex the next
record s read from disc into the buffer and the process
continued until the end of file

is found.

On the next page follows a Hex dump of the program.

65

Hex dump of READ program:

To enter from MOS:

ks W N o=

0100
0110
0120
0130
0140
0150
01680
0170
0180
0180
01A0
01BO
01Co
01DO
01E0
O1F0
0200
0210
0220
0230
0240
0250
0260
0270
0280
0280

3A
08
EO
01
0A
F5
04
01
Al
oA
90

01
D3
3E
00
32
CD
52
20
58
45
4D
20
52
54

.. MOS<E>
.. M 0O100<E>
. Enter the following code,
.. CTRL-BREAK to go back to DOS.
.. SAVE ‘2 READ.CONM.

READ

66

finish with

ED
CD
00

CD
EO
32
88
02
EQ
CD
Q0
01
EO
50
53
3E
D3
54
41
20
20

20
41
00

a full stop.

53 02 E0 3E
FA 01 3A 04

1A 28 46 FE
50 01 18 E1l
CD 05 00 32

01 FE 1B CA
32 01 EO 3E
CD 50 01 18
50 01 €3 69
FE 4F C2 18
11 54 02 CD
CDh 50 01 C9
01 C8 11 5C
02 EO 3E OF

01 C9 43 4F
20 49 53 3A
4D 45 2ZE 45
50 52 45 53

48 52 4F 4D
45 4E 54 45
42 55 4C 41
00 00 00 00

UNERASE

Ever lost any data by erasing a file that was not meant to
be? if you have then this useful utility can help. Written
in BASIC and using some ROM calls to access the disc you can
now UNERASE any files that have been lost.

If you have read the article on discs, the principle behind
this program will already be understood. For those who have
not here is a quick refresh: the operating syStem uses the
first 2 tracks of the disc, 2k of the third track, which is
actually track 2 as we number from zero, contains directory
information. Each file has 32 bytes of directory space, this
information is used to create the FCB when a file is loaded
into memory. The directory data holds the name of the file,
pointers to the actual locatiom of the data om the disc, and
also a byte to indicate whether the file has been erased.

When a file is erased the data on the disc is not actually
overuritten, only the first byte of the directory entry on
the disc is altered. The first byte contains the user area
the file was saved under, in Xtal DOS this is always 0, if
it has been erased it will contain the Hex character ES.
This is the same character that is used to format the disc,
and if this character is present in byte 1 then the system
will ignore that directory entry. To reclaim an erased file
all that has to be done is to reset this byte to a 00 and we
can re—-access the file on disc. An important note is that we
can only regain files that have not been written over, SO it
may be possible to unerase the directory entry but all the
information pointed to may not relate to that file as the
disc space may have been used by another progranm. Also
unerasing files tends to confuse the operating system and
disc space available figures may appear higher than they
should. The best solution is to unerase the disc and
transfer the contents to another disc and re-format the
original.

The following program uses ROH calls A2, and A3. These being
disc sector read and write respectively. It makes use of the
default scratchpad locations for these calls, as labelled in
the 1listing. As the directory occupies 4 sectors of 512K
bytes we need to do 4 sector reads and writes, lines 130 to
220. Each sector is read into the default memory buffer from
FEOOH, byte O for each directory entry is then changed to O
and the sector written back to disc. The program prompts the
user for the required action, pressing any other key than
“g" to start will leave the progranm and give a directory
listing.

67

UNERASE

10 RST

20 PRINT"UNERASE BY U.K.E.U.G."

30 PRINT:PRINT"ENTER DRIVE TO BE USED"

40 INPUTA:IF A>4 THEN BEEP:GOTO 10

50 PRINT:PRINT"INSERT DISC IN DRIVE";A

680 PRINT:PRINT"PRESS S TO START":PRINT"ANY OTHER TO

EXIT": B$=INCH$

70 IF B$<>"S" OR B$<>"s" THEN 230

80 CLEAR &8000

90 POKE&FB50,A: REM * DRIVE NUMBER x
100 POKE&FB51,2: REM x TRACK NUHBER X
110 DOKE&FB53,&FEQOO0:REM % BUFFER ADDRESS %
120 POKE&8000,&CF,8%A2,8&C9:REH * ROM CALL DISC READ x
130 FOR F=0 TO 3
140 : POKE&FB52,F:REM x SECTOR NUMBER x
150 : CALL&BOQO

160 : FORI=0TOS11STEP32

1762 IF PEEK(&FEQOQ+1)=0THEN180

180 : POKE&FEOO+I,0:REH *x UNERASE *
190 : NEXT 1

200 : POKE&B0O1,&A3:REM x WRITE DISC SECTOR x
210 : CALL&B00O:POKE&BOO1, &AZ

220 NEXTF

230 DIR

LISTING NOTES:

As the program stands there is no error checking, so if the
disc to unerase has its write protect tab set the program
will appear to work but as it is unable to write to the disc
will not unerase.

1t is a fact that some software houses use a development
disc to work with whilst writing software and on completion
erase everything except the final program. So it is always
worth unerasing any discs you buy just in case! If possible
backup first.

68

VIDEQO DISPLAY

A1l screen operations other than 80 column work are handled
by the Texas Instruments Video Display Processor, the TMS
9129. This integrated circuit or chip is a microprocessor in
it®s omn right and has nine internal registers that control
its operation. It is also coupled to a block of 16k bytes of
Videc RAM, (Random Access Memory), the combination of the
settings in the registers and the data in the VEAHN go
together to make up the screem display. The following notes
apply to the defamlt settimgs of a Graphic mode II display.
The Eimstein always works im Graphic mode II unless the
programmer initializes the VDP to one of the other 3 modes.

The VDP 238 the YRAM are imitialized on power up by the MHOS,
i.e. the BHachime Operatimg System or EOA, (Eead Only
Bemory), comtaias the required software to initialize the
YDPF o the default settings. The screen display can be
imagined as a set of 36 screens or planes that are stacked
together, the nearest plane having priority. There are 32
sprite planes, a text plane, a backdrop plane, an external
VDP input plame, and a black default plane. The external VDP
plane wuses another VDP to input a video signal and the two
images are merged, to our knowledge this facility has never
been used on the Einstein. If all planes are transparent
then the the display defaults to black. :

The diagram below shows how the planes go together to form a
complete image.

BLACK DEFAULT
PLANE

EXTERNAL VDP

l_l:_'l— PLANE
BACKDROP

PLANE

PATTERN
31 PLANE

SPRITE
0 PLANES

69

VIDEO DISPLAY

The image that we see is created with a series of dots known
as pixells, this principle is used to create newspaper
pictures, as the eye cannot distinguish between the pixells
they appear to be a complete image. A pixell is the smallest
amount of information that can be displayed on the screen,
the resolution of a display is usually measured in pixells,
the higher the figures the better the resolution. Alberts
resolution is 256%192, this means we have 49,152 pixells 1o
play with. If you look at the memory map you will see that
locations 0000 to 1800Hex are used for the Pattern Generator
Table, this is the area of VRAM that holds the information
on whether a pixell is being displayed or not. So how does
B8k bytes of memory hold all the pixell information? As I'm
sure you are aware there are 8 bits to a byte, therefore in
6k of memory there are 6, 144%8 bits available, and that
equals 49, 152, (48k), the same amount of pixells wWe can
access. Each pixell equates to a specific bit within a
memory location, the top left hand corner of the screen is
VRAH location 0000, see diagram. To turn a pixell on we set
it’s corresponding bit to a 1, to turn it off set to a zero.
This =mall BASIC program illustrates how the VRAM locations
equate to screen locations.

Pattern Table: Colour Table:
10 RST : 10 RST

20 BEEP 10 3 20 BEEP 10

30 FOR A=0 TO &17FF : 30 FOR A=22000 TO &37FF

40 VPOKE A, 255 : 40 VPOKE A,&36

S50 NEXT A : 50 NEXT a
The value of 255 in line 40 : The value of &36 in line 40
iz setting all the pixells : will change the <colour of
in the pattern generator to : the ON pixells to light
the 1 state, this will fill : green and the OFF pixells to
the screen with the current +: dark red. The colours are as
TCOL colour. Try wusing a : per the colour chart, the
different value to produce : first value, 3 is ON pixells
different effects. : and the last, 8 OFF pixells.

The VRAH Pattern Table locations equate to the screen
locations as shown in the diagram. Each block of 8%8 pixells
is built wup starting at the top left hand corner, then
moving across the screen to the right and so on. For each
pattern location there 1is a corresponding colour table
location, this is also a 6K block of VRAM, from 2000Hex +to
37FFHex. This is the area of VRAH that defines the colour of
the pixells, each byte within the Pattern Table has it's
pixell colours defined by a byte within the Colour Table. We
are limited to defining the ON and OFF colour for a row of 8
pixells, +this limitation can cause problems when creating
pictures in colour due to pixells of one colour overlapping
those of a different colour. This effect is easily seen when
using Picpen.

70

VIDEO DISPLAY
Video memory locations relative to screen position;

PATTEEN TABLE

COLOUR TABLE

The full image of the screea is 258x1S2 pixells, this is
broken up into 8x8 pixell blocks giving 32%24 character
positions in the graphic modes. Im text mode 6%8 pixell
blocks are used to give 40 characters across the screen,
this is achieved by not using the two right hand pixels of
the character block, if using graphic symbols the 32 column
zode must be used otherwise some graphics will be truncated.

il

VIDEO DISPLAY

So how do we use a byte of memory to define 16 colours? As
said before we have 8 bits to a byte, we use 4 bits for the
foreground or ON pixells and 4 bits for the background or
OFF pixells . As there are 16 possible combinations from 4
bits all the 16 colours available can be defined. The four
HSBs are the ON pixells and the four LSBs are the OFF
pixells, if we VPEEK the Colour Table area of VRAM in its
default state of white on blue, i.e. PRINT VPEEK(&3000) we
will find a value of F4 Hex. It is easy to decode this, F or
15 is white and 4 is blue. With all this information we can
write a small Basic program to save a screen as an .0OBJect,
or machine code, file and recall it. This takes several
seconds in Basic.

10 REH SCREEN SAVE 10 REM SCREEN LOAD

20 EST 20 R3T

30 CLEAR &8000 30 CLEAR &8000

40 ELLIPSE 100, 100,50 40 LOAD"SCREEN.OBJ"

50 C=&8000 50 C=0

60 FOR A=0 TO &17FF 60 FOR A=&8000 TO &97FF
70 B=VFEEK(A) 70 B=PEEK(A)

80 POKE C,B 80 VFPOKE C,B

90 C=C+1 90 C=C+1

100 NEXT A 100 NEXT A

110 SAVE"SCREEN.OBJ", 88000, &97FF

Obviously you will draw something more spectacular than line
30! The same thing can be done with the colour table, using
VRAM locations 2000Hex to 3800Hex. This could be used +to
create a loader screen similar to that when using a cassette
based machine.

VRAM locations 1800 Hex to 19FF Hex are used to define the
character set and the graphic symbols. There are a possible
256 characters available, each character requires 8 bytes of
memory, the diagram below shows how each byte goes to make
up a complete character.

8#8 PIXELL | B IR hd T B
BLOCK EiSEE

5
:

BRUEBERBHS

72

VIDEO DISPLAY

To set the control bits for a read, i.e. the two MSB bits of
the MSB address byte to 00, we AND with 3FHex. If we look at
the binary of 3FHex all should become clear;

Hex : 3 : F
Banary: =0l 0 sh-au] o v ogab il

ANDing with zero always produces a zero, ANDing with a one
will produce a one if the other bit of the AND is a one or a
zero if the other bit is a zero. Therefore the first tuwo
bits will always end up as a O and the following bits will
be the same as they were. To set the control bits to 01 as
for a write all that is needed is to OR with 40Hex after
ANDing with 3FHex as above. ORing always produces a 1 if
either or both bits are a 1, a zero is produced if both bits
are zero.

The VDP requires a delay of 8 micro seconds between
successive reads or writes to VRAM, this is usually not a
problem due to the code being used between the operation of
reading or writing but if in line code is used a delay must
be introduced wusing say a PUSH and a POP or similar
instructions.

VDP REGISTERS:

There are 8 write only registers and 1 read only or STATUS
register. To write to any of registers 0-7 requires a two
byte transfer. The first byte contains the data to be
written into the register and the second byte contains the
register number we wish the data to be input to. The
register number is held in the 3 LSB's, the M5B must be a 1
with all other bits set to ZERO.

BYTE I/7DATR S o 228 27 ? PET RS RE?
BYTE 2/PEGISTER. "% T 0 ="0D"2 O°T @ <+ REG! NO.

To read the STATUS register we read the value input from
port 9.

The VDP mode of operation is controlled by the settings of
the Mode bits in registers O and 1.

MB1 HMBZ HB3

GRAPHICS HODE 1. ... B 0 o]
GRAPHICS HODE 2 ... O 0 1
MULTICOLOUR B 1 ¢]
TEXT MODE 1 0 4]

74

VIDEO DISPLAY

VDP REGISTERS:

Register HSB LSB
0 : o : O ¢ @0 @ 0 w0 = O : MB3 : EV :
1 . 1 : BL : IE : HB1 : HB2 : 0 :SIZE : HAG
2 s i = O = @ 3 0 2 PATTERN NAME TABLE
3 : PATTERN COLOUR TABLE BASE ADDRESS :
4 gRop *E-ig- = O = @ : 0 :PATTERN GENERATOR:
= 0 SPRITE ATTRIBUTE TABLE BASE ADDRESS
6 Ty = 0O 0 o oA S SPRITE PATTERN
T : TEXT ON COLOUR : TEXT OFF/BACKDROP :

STATUS gacgrdguBgpe € ° FIFTH SPRITE NUMBER :

REGISTER O: Only the LSB and bit 1 are used;

Bit O — external VDP control, set to O.

Bit 1 - mode select bit 3, used with register 1 bits 3@ 4
to set the VDP operating mode.

REGISTER 1:

Bit 0 — O selects no sprite magnification, 1 selects %2.
Bit 1 — O selects sprite size 8x8, 1 selects 16%16.

Bit 2 - not used.

Bit 3 - mode select bit s

Bit 4 - mode select Bt 1.

Bit 5 - not used.

Bit 8 - 0 to blank screen, 1 normal.

Bit 7 - set to 1 on Einstein for 18k video RAH.

REGISTER 2:

Only the 4 LSB bits are used, the upper 4 being set to ©.
The start address of the name table = contents of register
24400 Hex.

REGISTER 3:

The contents of register 3 form the upper 8 bits of the
fourteen bit pattern colour table base address. The pattern
colour table base address = contents of register 3 ¥ 40 Hex.
In graphics mode 11 the colour table may only be located at
0000 or 2000 Hex.

REGISTER 4:

Only the 3 L3B are used, all other bits set to 0. The 3 LSB
define the base address of the pattern generator table. The
base address = cCORtents of register 4x800 Hex. In graphics
mode II this may only be located at 0000 or 2000 Hex.

75

VIDEO DISPLAY

REGISTER 5:

Bit-T — mer 150

The remaining bits define the base address of the sprite
attribute table, address = contents of register S5%80 Hex.

REGISTER 6:

Only the 3 LSB are used all others set to 0. Forms the base
address of the sprite pattern generator. Address = contents
of register % 800 Hex.

REGISTER 7:

The upper 4 bits contain the colour code for the ON pixells
in text mode, the lower four bits the colour code for the
OFF pixells in text mode and the backdrop colour in all
modes. !

REGISTER 8: (STATUS REGISTER)

The 5 LSB contain the number of the Stf sprite, the VDP can
only display a maximum of 4 Sprites correctly on one line.
Bit 5 - Is set to 1 if two or more sprites overlap.

Bit 6 - Set to 1 when 5 or more sprites occur on one line.
Bit 7 - Interrupt flag, set to 1 at the end of a raster.

DEFAULT MEHMORY MAP:

HEX DECIHMAL
3FFF 18383
NOT USED

3FCo
TEXT POSITION
3C00 15360
FUNCTION KEYS
3B80O 15104
PATTERN NAME
TABLE
3800 143386
PATTERN COLOUR
TABLE
2000 8192

CHARACTER / GRAPHIC
@ SPRITE SHAPES

1800 6144
PATTERN GENERATOR
TABLE

0000 0000

76

VIDEO DISPLAY

There now follows a routine to save and load a screen using

a machine code progras.

Basic

OEG 0100H
LOAD 4000H
SCEATCH:EQU ODOOOH
LD HL,OBOOOH
LD (SCEATCH),HL
LD A,00
OUTi(S).A

LD A,00

AND 3FH
OUT(S).A

LD B.24
LOOP1:PUSH BC
LD B,O

LOOP2: 1IN A, (8B)
LD HL, (SCRATCH)
LD (HL),A

INC HL

LD (SCRATCH),HL
DJNZ LOOPZ2
POP BC

DJNZ LOOP1
RET

LD DE,O0BOOOH
LD HL,O

LD B,24
LOOP3:PUSH BC
LD B,O
LOOP4:PUSH HL
PUSH DE

LD A,L

OuT (9),4A

LD A,H

OR 40H

OUT (9),A

POP DE

LD A, (DE)
ouT(8),A

POP HL

INC HL

INC DE

DJNZ LOOP4
FPOP BC

DJNZ LOOF3

RET

NCP

END

sSTART LOCATION RAM
;POINTEER TO RAM
;LSB OF ADDRESS
:SEND TO VDP

:NSB OF ADDRESS
;SET CONTROL BITS
SEND TO VDFP

:24 ROES OK SCREEN
;RO¥ NUMBER

;COUNT 256 PIXELLS
;READ FROH VDP
sUPDATE

s THE

;RAH

s;POINTER

;256 PIXELLS DONE?
;GET NEXT ROW

+DO 256 PIXELLS
sFINISHED SAVE
;START OF LOAD
;FROM RAM TO VEAHM
;24 ROWS

;SAVE ROW COUNT
;256 PIXELLS

;SAVE VRAM ADDRESS
;SAVE RAM ADDRESS
;LSB VRAM ADDRESS
;SEND TO VDP

;HSB VRAM ADDRESS
sSET CONTROL BITS
3SEND TO VDP

;GET RAHM ADDRESS
;DATA FROM RAH
;SEND TO VDP
;UPDATE

;VRAH POINTER

;RAM POINTER

;256 PIXELLS?
sNEXT ROW

;NEXT 256 PIXELLS
sFINISH LOAD

77

If you want to use this program from
instructions are on the next pages.

The first part of
this program will
make a copy of the
Pattern Table, VRAM
locations 0000-17FF
Hex,into main RAHN
locations BOQO-C7FF
Hex. The second
part of the progranm
will copy main RAHM
back into VRAH. To
use the screen load
requires a call to
location 0125 Hex
and the screen

information must be
in main RAM from
location BOOO Hex.

VIDEO DISPLAY

If you do not have an assembler or prefer to enter the code
from HOS this is what you need to do:
Enter DOS with a CTRL-BREAK, then type MOSKE>.

1 .. MOI100<E>

You will see location O100H and it’'s pPresent contents being
displayed on the screen. What you need to now do is enter
the following code, I usually enter lines of 8 bytes
followed by ENTER. After you have finished entering the code
exit +the modify by using .<E> (full Stop then enter). You
should now check that everything is correct by tabulating
the memory you have just altered,
2 .. T 0100 O180<E>

You should see the same Hex dump as is printed below, if it
is not the same then go back and modify the differing
locations. When you have completed entering the code the
next step is to save it as a file so it can be used from
XBAS. The type of file we need is a .0OBJect file, so enter
DOS with a CTRL-BREAK and type

3 .. SAVE 1 SCREEN.OBJ<E>

We now have a machine code file that can be LOADed into a
basic program and CALLed. If you check the DIRectory you
will see the file SCREEN.OBJ nowu present, the 1 after the
SAVE command tells the DOS how much code to save in 256 byte
blocks. Hex dump of the screen save/load program;

0100 21 00 BO 22 00 DO 3E 00
0108 D3 09 3E 00 EB 3F D3 09
0110 068 18 C5 06 00 DB 08 2A
0118 00 DO 77 23 22 00 DO 10
0120 F4 C1 10 EE C9 11 00 BO
0128 21 00 00 06 18 C5 06 00
0130 ES DS 7D D3 09 7C F6 40
0138 D3 08 D1 14 D3 08 E1 23
0140 13 10 ED C1 10 E7 CS9 00

To use the program from XBAS we have to be careful where we
load the SCREEN.OBJ file. The pProgram is using memory
locations BOOOHex +to C7FFHex to save the VRAM, XBAS uses
memory upto approximately 4000Hex so we can use memory
somewhere between the two to locate our .0OBJ file. The
example uses AOOOHex which leaves plenty of room for any
basic programing. All we need to do is to CLEAR &A000 and
CALL &AQO00 to run the first part of the program, the screen
save. To run the second part, the screen load we need to
CALL &AO25. Having saved a screen we can then save the RAH
as another .0BJ file for use later on.

78

|

VIDEO DISPLAY

SCREEN SAVE: SCREEN LOAD:
10 CLs 10 CLS
20 CLEAR &A0OO 20 CLEAR &A000
30 LOAD*"SCREEN.OBJ" 30 LOAD *"SCREEN.OBJ*"
40 ELLIPSE 100, 100,60 40 CLEAER &B0O0OO
SO CALL &AQ0O0C S0 LOAD *"DEMO.OBJ*
60 SAVE *"DENO.OBJ".LBOOC . &L7FF 60 CALL &A025

Lime 30 im the save prograx is where your artistic
ismpressions would go. This primciple could be used to flash
betueen tE0 Or NOre Screems saved in EAM or a form of
windowing could be desigmed. It will mot work with colour as
it stands Buat a wery similar routine for the colour table
could be mritren.

SFRITE ATTRIBUTES:-

The locations 3300 Hex to 3B7F Hex kold informatiom on the
32 awailable sprites. 4 bytes of memory are used for each
sprite, the first two bytes determine the sprites position
on the screem, the third byte is a pointer to the character
shape from the patterm table. the last byte is wused to
define the sprites colour. If more than 4 sprites are
displayed on the same horizontal line the 4 highest sprites
will be displayed normally the 5th and subsequent sprites
are transparent on that line. The 5th sprite flag is set in
the status register as is the number of the Sth sprite.

FUNCTION KEYS:

The data for the function keys is held in VRAM locations
3880 Hex to 3BFF Hex. Each key setting is seperatef from the
mext onme by adding 80 Hex to the last character in the
ssrimg. If less than all 128 bytes are used a 00 defines the
end of the settings.

VEAH:

The wery top of VRAM, locations 3FCO Hex to 3FFF Hex are not
ms=d. These locations are not reset unless the machine is
powered off and on, a reset using the button at the rear of
tae machine does not affect these locations.

79

CHARACTER SET

Here is a complete new character set. You can use it in your
own programs, however it is not compatible with 40 columns.
Once the character is loaded try CL540 and you will see what
Wwe mean.

To return to +the normal character set, just use +the RST
command.

10 CLS32

20 FOR -F=32 TO 122

30 READ As

40 SHAPE F,As

50 NEXTF

60 PRINT@13,6;"0.K. ";@3,8; "CHARACTER SET NOW LOADED *

70 PRINT:PRINT:FOR F=32T0122:PRINTCHRS(F) ; : NEXT
1000 DATA "0000000000000000"
1001 DATA "3838383838003800"
1003 DATA "6C6C244800000000"
1004 DATA "44FE444444FE4400"
1005 DATA "107C407C047C1000"
1006 DATA "E2A4E8102E4A8E00"
1007 DATA "60908040A090E800"
1008 DATA "3838083000000000"
1008 DATA "1830606060301800"
1010 DATA "30180CQCOC 183000"
1011 DATA "00187E3C7E180000"
1012 DATA "0010107C18180000"
1013 DATA "00000000000COC 18"
1014 DATA "0000007E7E000000"
1015 DATA "0000000000181800"
1016 DATA "0000020408102000"
1017 DATA "7C444C5464647C00"
1018 DATA "7010101010107C00"
1018 DATA "7E02027EB0607EQ0"
1020 DATA "3E02023EO0B087E00Q"
1021 DATA "404444447E0COC0O0"
1022 DATA "7C40407COCOCT7CO0"
1023 DATA *7C44407C64647C00"
1024 DATA "7E42040818181800"
1025 DATA "7C44447C64647C00"
1026 DATA "7C44447C0C4C7C0O0"
1027 DATA *"0038380038380000"
1028 DATA "0038380038380830"
1029 DATA "OC18306030180C00*"
1030 DATA "007C7C0OQ7C7C0O000"
1031 DATA "30180C060C 183000"
1032 DATA "7E42021E10001000"
1033 DATA "FES82BAAABES8OQFEOQOQ"
1034 DATA "FCB4FEC2C2C2C200"
1035 DATA "FCB4FEC2C2C2FEQ0"
1036 DATA "FEB8280COCOC2FEQQ"
1037 DATA "FC8232C2C2C2FC00"
1038 DATA "FEBOFCCOCOCOFEOOQ"
1039 DATA "FE8SOFCCOQCOCOC00QQ"

80

CHARACTER SET

1040 DATA “"FEB2BODEC2CZFE0O”
1041 DATA "8B282FEC2C2C2C200*
1042 DATA "1010181818181800"
1043 DATA "02020680608887C00"
1044 DATA "828488F8C4C2C200"
1045 DATA "8080COCOCOCOFECO"
1046 DATA "FCS2D2DZD2D2D200*"
1047 DATA "E2S2D2D2D2D2CEOC"
1048 DATA "FEBZCZC2C2C2FEOC"
1049 DATA *FESZEZFECOCOCO00*
1050 DATA "FEBZC2C2CACAFA00"
1051 DATA "FESZ2S82ZFECAC2CZ00"
1052 DATA “FESOSOFEOBOSFEOO"
1053 DATA "FE10181818181800°
1054 DATA “B2B2C2C2C2C2ZFFO0”
1055 DATA "8282C2C244281000°
1056 DATA "SZSZDZDZDZDZFECC”
1057 DATA "6244281028448200°
1058 DATA “B28Z82ZFE10181800"
1058 DATA “FEO408102060FE00"
1080 DATA *“TETESOS0607E7EOO"
1081 DATA *0000402010080400°
1062 DATA *"T7TE7EOB06067E7E00"
1063 DATA *183C6564200000000"
1064 DATA "000000000000QOCFF"
1065 DATA *"T7TE42FB8606060FE00"
1066 DATA "O00007EQZ27E4Z7E00"
1067 DATA "40407E4242427E00"
1068 DATA "00007E4040407EQQ"
1065 DATA "02027E4242427EQQ"
1070 DATA. "OO0Q07E427E407TEQO"
1071 DATA "3E20782020202000"
1072 DATA "OQQO07E42427EOZTE"
1073 DATA "40407E4242424200"
1074 DATA "1800181818181800"
1075 DATA "020002020202427E"
1076 DATA "4040424478444200"
1077 DATA "1818181818181800"
1078 DATA "00007C5454544400"
1079 DATA "00Q07E4242424200"
1080 DATA "OO00QTE4242427E0Q"
1081 DATA "OOOQ0Q7E42427E4040"
1082 DATA "O000TE42427E0202"
1083 DATA "00007E4240404000"
1084 DATA "OOOOT7TE407EQ27E00"
1085 DATA "20207E2020203E00"
1086 DATA "0000424242427E00"
1087 DATA "0000444444281000"
1088 DATA "0000445454547C00"
1089 DATA *0000442810284400"
1090 DATA "00004242427EO27E"
1091 DATA "00007C0810207C00"

81

CHPRDES
CHARACTER DESIGNER

This program allous you to design your own character set
from A to z, (ASCII 65 to 12Z2)and save it as an OBJECT file.
Then wusing the short routine following you can reload your
character sets for use with other progranms.

10 CLEAR&BOOO:FORF=6664T07392: A=VPEEK(F):POKE F+8&95F8, A

:NEXT F
20 HAGO:RST:BCOL1: TCOL1S, 10:CLS32:G0SUB550
30 BEEP
40 SPRITE!1,X,.Y,1,159
50 A=KBD

60 IF A=80THENX=X+8:1F X>136THEN X=80
70 IF A=79THENX=X-8:IF X<B80THEN X=136
80 IF A=81THENY=Y+8:IF Y>144THEN Y=88
90 IF A=B5STHENY=Y-8:1F Y<88THEN Y=144
100 IF A=32THENTCOL15,4:PRINT@X/8,24-Y/8;CHR$(158):
TCOL15, 10
110 1F A=70 THENPRINT@X/8,24-Y/8;CHR$(160)
120 IF A=42 THEN GOSUB S550:REM CLEAR
130 IF A=43 THEN GOSUB 160
140 IF A=63 THEN GOSUB 480
150 GOTO40
160 REM STORE DATA TO CHARACTER
170 BEEP:FORF=1TO200:NEXT :TCOL1,4: PRINT@0,21;"ENTER
CHARACTER TO CHANGE":
180 POKEB4326,0:CH=KBD:IF CH>64ANDCH< 122THEN190:ELSE 180
190 PRINT®O,0;"S T O R E";@81,2;CH:85,2;CHR$(CH) :PRINT@
0,21;"R TO REDO C TO CONTINUE *“;
200 POKEB4326,0:Q=INCH:IF Q<>82 AND Q<>87 THEN BEEP:
GOTO200
210 IF Q=82 THEN BEEP:TCOL15, 10:PRINT@0,213;5PC(31):FOR
F=0TO3:PRINTR®0,F;SPC(9) :NEXT :RETURN
220 FOR F=0TO7
230 A$(F)=SCEN$(F+8)
240 A$(F)=HID$(AS$(F),11,8)
250 NEXTF
260 PRINT®0,21;"PLEASE WAIT-STORING CHARACTER "
270 FOR G=0TO7
280 TT=0
290 FOR F=0TO7
300 N=ASC(MID$(A$(G),F+1,1))
310 IF N=160 AND F=0 THEN TT=TT+128

320 IF N=160 AND F=1 THEN TT=TT+64
330 IF N=180 AND F=2 THEN TT=TT+32
340 IF N=160 AND F=3 THEN TT=TT+186
350 IF N=160 AND F=4 THEN TT=TT+8
360 IF N=160 AND F=5 THEN TT=TT+4
370 IF N=180 AND F=6 THEN TT=TT+2
380 IF N=160 AND F=7 THEN TT=TT+1
390 NEXTF

400 CHV(G)=TT

410 NEXTG

420 N=0

430 HEM=&BOOO+((CH-65)%8)

82

CHARACTER DESIGNER

440 FOR F=MEH TOHEHN+7

450 POKE F,CHV(N):N=N+1

480 NEXT F

470 Q=82:G0T0210

480 REM SAVE REDEFINED CHARACTEE SET

490 PRINT@0,21;"SAVE CHARACTER SET YES OR NO ";:AS$=INCH$
500 IF A$="Y"THEN 510:ELSE Q=82:G0T0210

510 PRINT®@0,21;"ENTER FILE NAME (8 CHARS HAX) ":INPUTFs
520 F$=F$+".0BJ"

530 SAVE Fs$,&B000, &B000+728

540 Q=82:PRINT&0,22;SPC(20): GOTOZ10

550 REH SETUP

S60 SHAPE159, "FFFFC3C3C3C3FFFF*

570 SHAPE158, "FF818181818181FF"

580 X=80:Y=144:TCOL15,4

580 FOR F=10TO017

600 FOR G=6TO13

610 PRINT@F,G:CHR$(158)

620 NEXTG,F

630 PRINT@20,0;" H_E N U *°

640 PRINT®@19,2;"LEFT ... O"
650 PRINT@19,4;"RIGHT ... P"
660 PRINT@19,6;"UP e e Ly
670 PRINT®19,8;"DONN ... A"
680 PRINT@19, 10;"FILL ... F"
690 PRINT@19, 12; "UNFILL. .SPC"
700 PRINT@19, 14; "CLEAR ... Xx*
710 PRINT@19, 16;:"STORE ... +"
720 PRINT@®19,18;"SAVE ... ?°

730 TCOL15,10: RETURN

This is the loader program for the object file produced by
the character set designer. Remember if the characters don’t
come out properly you can return to the normal character set
with the RST command.

10 RST:TCOL15,4:BCOL1:CLS32

20 CLEAR &B000:FORF=&BO0QOTO&B0O00+728:POKEF, 0:NEXTF

30 TCOL4, 15:PRINT@6, 1; "CHARACTER SET LOADER":TCOL15,4
40 PRINT@®0,3;:INPUT"ENTER FILENAHMHE ";F$

S0 F$=F3%+".0BJ"

680 BEEP:PRINT@®0,3;8PC(32):;80,3:"Loading ":iF$

70 LOAD F#

80 BEEP:PRINT@®0,3;SPC(32):;80,3; "Pokeing character set

into VRAM"

S0 N=0 :
100 FOR F=&B00O TO &B0OOO+728

110 A=PEEK(F)
120 VPOKEBGBE64+N, A:N=N+1
130 NEXTF
140 BEEP:FOR F=2T022:PRINT@0,F;SPC(32):NEXT F

150 PRINT@C,3
160 FOR F=85 TO122:PRINTCHR$(F);:NEXTF
170 END

83

PRINTER GRAPHICS

There now follow +two routines to enable the dumping of
pictures from the screen to +the printer. The first
explanation uses the program from Einstein User Vol 1,4. Our
thanks to Tatung for allowing its publication. The second
program is a modification of the first which gives a double
sized dump, this was originally written by Dave Salvage.

To dump drawings or pictures from the screen to the printer
requires the use of a printer capable of printing in a pin
addressable mode. If we briefly look at the way a dot matrix
printer works we can see what this means. The print head
comprises of a number of ’'pins’ these pins are pressed
against an inked ribbon and onto the paper creating a dot
for each pin. This is the same principle as the screen
pixells, a matrix of dots is used to form a character and
the human eye merges the dots together. The closer the dots
are printed the clearer the character, this principle is
used for Near Letter Quality printers where two passes of
the print head are made with a very slight movement of +the
paper between the two passes. The second pass of the print
head fills in +the spaces between the dots and a clearer
image is created. A printer which can address each pin
seperately is capable of graphic dumps. As there is no
routine within the MOS to do this we need a small piece of
code which converts the pixells on the screen to pins on the
printer.

The source listing is included after the Hex dump if you
wish to use an assembler, as the code is fairly short it is
as quick to use the HOS as follows:

1" . . " HOSCHED
2 .. M O100<E> Now enter the following code:

0100 DB20EBICFE10COZA<E>
0108 SAFBESZ2A9CFBES21<E>
0110 BF00229CFB210000<E>
0118 229AFBESDDEI1ESFD<KE>
0120 EI1DDESOB082171A0<E>
0128 TECFOF2310FAFDES<E>
0130 OEOQOICSCFC7C12801<E>
0138 37CB11FD2B30F379<E>
0140 CFOFFDE1DDZ3DDESKE>
(148 F1B728E2DDE101F8<E>
0150 FFFDO93EQOACFSFFD<E>
0158 ESE101BF000838CI1<E>
0160 3E1BCFOF3E40CFSF<E>»
0168 E1229CFBE1229AFB<E>
0170 C90D1B41081B4BO0O<KE>
0178 01.<E>

3 .. CTRL-BREAK<E>
4 ., SAVE 1 GDUHP1.OBJ<E>

PRINTER GRAPHICS

We now have a machine code file that can be used from Basic.
The values in locations 0126 and 0127 define where in memory
the file should be loaded, as it is writtem this is &AQOO.
To use the dump from Basic the following limes need to be
added to your Pprogram;

CLEAR &AQOQ
LOAD “GDUMP1.0B5"
CALL &A000

ORG CaOOOE DEFB SFB
LoaD CaDOOE roF 1Y
ORCX-EQD OFBSAR INC IX
ORCY:-EQU OFBSCHE PUSHE IX
ATERES - EQU 208 PFOF AF

IN A, (AJEREG) O &

AND ICH JR Z,.GDUNP2
Cr 108 POP 1X

EET NZ LD BC,OFFF8H
LD HL, (ORGX) ADD IY,.BC
PUSH HL LD A,OAH

LD HL, (ORGY) EST 8

PUSH HL DEFB SFH

LD HL.191 PUSH 1Y

LD (ORGY),HL POP HL

LD HL,O LD BC, 191
LD (ORGX),HL ADD HL,BC
PUOSH HL JR C,GDUHMPO
POFP 1IX LD A, 1BH
PUSH HL RST 8

POP 1Y DEFB SFH
GDUMPO:PUSH 1IX LD A,40H

LD B.S RST 8

LD HL,PARANS DEFB SFH
GDUNP1:LD A, (HL) POP HL

EST 8 LD (ORGY),HL
DEFB SFH POP HL

INC HL LD (ORGX),HL
BJNZ GDUMFP1 RET
GDUNP2:PUSH 1Y PARAMS:DEFB ODH, 1BH,41H, O8H, 1BH
ip C.1 DEFB 2AH, O5H,00H,01H
GDUNP3:PUSH BC END

EST 8

DEFB OC7H

FOP BC

JR Z,GDUHP4

SCF

GDUNP4:RL C

DEC 1Y

JE NC,GDUMP3

LD A.C

EST 8

85

PRINTER GRAPHICS

The first U.K.E.U.G. newsletter featured an article by Chris
Giles to add the dump program to the DOS tracks of the disc.
Once done, the dump program is automatically loaded into
memory as the DOS is loaded. All that is needed to access
the program is a call to the location containing the code.
To add the dump to DOS 1.31 we need to read into memory the
DOS tracks, add the dump and write back the 'new® DO03. 1If
you have already entered the dump as above and saved it as
an object file then this is what is required;

1 .. CTRL-BREAK<E>: To enter DOS.
2 .. LOAD GDUHP1.0BJ<E>: The dump program iS now in memory
from location 0100 Hex onwards.

3 .. MOS<E>: To enter HOS.

4 .. R 8000 898B00<E>: Read DOS tracks into memory locations
8000-9800 Hex.

5 .. C 0100 0178 8170<E>. Copy dump program from 0100 to
memory containing DOS at 8170 Hex.

6 .. M 8196<E>»: Modify pointer to printer parameters.

7 .. EIE2.<E> : Enter new values.

8 .. W 8000 9B0O0O<E>: Write modified DOS to disc.

If we now do a CTRL-BREAK with this disc in drive 0O the
modified DOS will be locaded into memory.To use the dump a
call to location E270 Hex is required, you can check the
program from MOS by typing .. G EZ70<E>. From Basic you
will need to add the following lines to a program;

CLEAR &E26F
CALL &E270

1f this disc is used during a format operation then the
modified DOS will be transfered to any other discs. If you
want to transfer this DOS to another disc then insert disc:
into drive O and; -

MOS<E>

R 4000 6B00<E>

Insert disc to be modified.
W 4000 BB0O0<E>

[

Remember that using the W command from MOS writes directly
to the disc so it is possible to get it wrong, make a backup
of any important disc first, just in case. If you have a
different type of printer to an Epsom or Tatung TPBO/100,
the parameters that set the printer into dot graphic mode
may need changed, these start at location 0171 Hex in the
above listing.

86

PRINTER GRAFPHICS

program creates a double size graphic dump, i.e.
1s on the printer for each pixell on the screen. It
jigmed to run at location AQOO Hex, so from Basic you
meed to:

CLEAR &A000

LOAD *"GDUHPZ2.0BJ"

CALL &AO000

POP BC
JR Z,GDUMP4
SCF

GDUMP4:RL C
DJNZ GDUHP3

“E LISTING FOR GDUMP2:

. @RG OAOOOH DEC 1Y

~ LDaD OAOCOOH JR NC,GDUMPS

. OEGX:EQU OFBSAH LD A,C
OECY:EQU OFBSCH RST 8
AUXEEG:EQU 20H DEFB 9FH
IN &, (AUXREG) RST 8
AND ICH DEFB 9FH
CcP 108 POP 1Y
RET NZ INC IX
LD HL. (ORGX) PUSH IX
PUSE HL POP AF
1D HL, (ORGY) OR A
PUSE HL JR Z,GDUMP2

-‘ 1P HL, 191 POP IX
-‘ LD (ORGY),HL LD BC,OFFFCH

LD HL.O ADD IY,BC
LD (ORGX),HL LD A,OAH
PUSH HL RST 8
POP IX DEFB 9FH
PUSE HL PUSH 1Y
POP IY POP HL
GDUMPO:PUSH IX LD BC, 191
LD B,9 ADD HL,BC
LD HL,PARAMS JR C,GDUNPO
GDUNP1:LD A, (HL} LD A, 1BH
EST 8 EST 8
DEFB SFH DEFB SFH
INC HL LD A,40H
DJNZ GDUMP1 EST 8
CDUMP2:PUSH IY DEFB 9FH
LD C,1 POP HL
GDUMPS:LD B,2 LD (ORGY),HL
GDUMP3:PUSH BC POP HL

LD (ORGX),HL
RET

PAERANS:DEFB ODH, 1BH,41H,08H, 1BH
DEFB 2AH,OSH, 00H,02ZH

END

87

PRINTER GRAPHICS

GDUMPZ2 HEX DUMP:

0100
0108
0110
Ol1ls
0120
0128
0130
0138
0140
Ol48
0150
0158
0160
0168
0170
0178

DB20E61CFE10C02A<E>
SAFBES2A9CFBES2 1<E>
BFO0229CFB210000<E>
229AFBESDDE 1ESFD<E>
E1DDESOB072177A0CE>
7ECFOF2310FAFDES<E>
OEQ10802CS5CFC7C 1<E>
280137CB1110FSFD<E>
2B30EF79CFIFCFIF<E>
FDE1DD23DDESF1B7<E>
28DCDDE101FCFFFD<E>
O93EOACFOFFDESE1<E>
01BFO0O0938BB3E 1B<E>
CFOF3E40CFIFE122<E>
SCFBE 1229AFBCY0D<E>
1B533839393390002. <E>

To enter the code from MOS;

DB WN -

& With a full stop.

.. MOS<E>
.- M 0100<E>
.- Enter the above code finishin
-- CTRL-BREAK to enter DOS.
-- SAVE 1 GDUMPZ2.0BJ
ERRATUM:
Location 0124 should be;
09 not 07.

Locations 0178 onwards should read;

0178 1B41081B2A0S50002.<E>

The above code is for Epsom printers.

For Tatung TP80/100:
Location 0124 should be 08.

Locations 0178 onwarde should read;
0178 1B41081B4B0002.<E>

88

SCRATCHPAD

The SCRATCHPAD area of memory is used by the operating
system to define certain parameters. It is initialised on
power up by the Machine Operating System, (MOS), and is used
by whatever language is in operatioa. The scratchpad area of
memory starts from FBOOHex. Listed below are some of the
more useful scratchpad locatioans, for a complete list and
explanation refer to the Crystal Research book ‘'Albert

Revealed’.

FBOO INTERRUPT VECTOR FOE CTIC O

FBO2 INTERRUPT VECTOR FOE CIC 1

FBO4 INTERRUPT VECTOR FOR CTC 3

FBOG6 INTERRUPT VECTOR FOR CYC 4. REAL TIHE CLOCK.

FBOS INTERRUPT VECTOR FOR KEYBOARD

FBOA INTEERUPT VECTOR FOE A/D CONVERTOR.

FBOC INTERRUPT VECTOR FORE FIRE BUTTON.

FBOE INTEREUPT VECTUR FOR USER USE.

FB1O INTERRUPT VECTOR FOR FRINTER.

FB12 INTERRUPT VECTOR FOR PIO B.

FE14-FB15 ROUTINE TO READ MENORY FROM RON.

FB17 EOUTINE FOE THE END OF A "GO’ COMHAND FROM MOS.

FB1A-FB20 ROUTINE TO BLOCK COPY, USED BY °C” COMMAND FROHM
HOS. (UP).

FBZ21-FB27 ROUTINE TO BLOCK COPY., USED BY °C’ COMHAND FROH
HOosS, (DOEN).

FB28-FB2F ROUTINE FOR EXTERNAL CALL INTO MOS.

FB30 BREAK VECTOE.

FB32 COLD START VECTOR

FB34 WAEN START VECTOR.

FB36 VDP MODE.

FB38 TEXT COLOUR. ES NIBBLE-FOREGEDUND, LS
NIBEBLE-BACKECEOUND.

FB39 GRAPHICS COLOUR. AS ABOWE.

FB3a NOS FUNECTION TABLE VECTOR

FB3C BOS INITIALISATION VECTOR

FB3E ALPHA LOCK TOGGLE, UPPER CASE=136 LOWER CASE=8

FB3F CURSOR CHARACTEER CODE.

FB40 PRONPT CHARACTEE CODE.

FB41 CURSOR BLINK EATE.

FB42 KEY REPEAT DELAY.

FB43 KEY EEPEAT SPEED.

FB4a4 SECTOR SIZE IN 256 BYTE BLOCKS.

FB46 CODE OF LAST KEY PRESSED.

FB4a SCREEN COLUMN. (X)

FB4B SCREEN ROW. (Y)

FB4AF LINE LENGTH. I1.E. 32,40 OR 80.

FBSO CURRENT DRIVE NUMBER.

FBS1 CURRENT TRACK NUMBER.

FBS2 CURRENT SECTOR NUHBER.

FB53 BUFFER FOR DISC IN/QUT.

FBS5S FLAG TO INDICATE READ OR WRITE.

FBS6E ERROR STATUS VALUE.

89

SCRATCHPAD

FBS7 NUHBER OF TRIES ON READING DISC BEFORE SIGNALING
AN ERROR.

FBS8 TRACK COUNT O.

FBS9 TRACK COUNT 1.

FBSA TRACK COUNT 2.

FBSB TRACK COUNT 3.

FBSC STORE FOR VALUE AT BREAKPOINT.

FBSD LOCATION AT BREAKPOINT.

FBSF VDP STATUS.

FBEBO-FB78 THIS AREA IS5 USED TO STORE THE REGISTERS WHEN
EXECUTING A PROGRAH. THE ORDER OF STORAGE IS:
I,IX,1Y,SP,AF',BC*,DE’,HL", AF,BC,DE,HL, PC.

FB79 TEHPORARY STORE FOR HL.

FB7B TEHPORARY STORE FOR SP.

FB7D-FB8B DISC INFORMATION.

FBBC-FBO91 TIME STORAGE AREA.

FBS2 FLAG FOR INTERRUPTS.

FB93 POINTER FOR FUNCTION KEY IN VIDEO RAM.

FB94 POINTER TO FUNCTION KEY AREA IN VIDEO RAHM.

FB9& DESTINATION ADDRESS OF *DRAW® TO X.

FBO8 DESTINATION ADDRESS OF *DRAW® TO Y.

FBOA X ORIGIN.

FBSC Y ORIGIN.

FBSE POLYGON CENTRE CO-ORDINATE X.

FBAO POLYGON CENTRE CO-ORDINATE Y.

FBAZ ELLIPSE RADIUS X.

FBa4 ELLIPSE RADIUS Y.

FBAB NUHBER OF SIDES OF POLYGON.

FBAS DOTON.

FBAS9 DOTOFF.

FBAA DOTONZ.

FBAB DOTOFF2.

FBAC STORE FOR DOT COUNT FOR DOTON/DOTOFF.

FBAD FILL MODE, BACKGROUND=0 FOREGROUND=1.

FBAE FILL STACK POINTER.

FBBO STEPPING RATE FOR DISC. 00-6mS, 01-12mS, 02-20m85,
03-30m5.

FBB1 SIDE FLAG. SINGLE=0 DOUBLE=1

FBBS8-FBDF INPUT BUFFER.
FBEO-FBFF 32 BYTE BUFFER FOR COPYING TO AND FROM VDP.

When writing BASIC programs it is sometimes useful to Peek
or Poke some of the above Scratchpad areas in order to
achieve results otherwise not available or for a reduction
in the amount of code used. For instance FB3E contains the
code for UPPER or lower case characters. Pokeing this
location with 136 will enable UPPER case and pokeing it with
8 gives lower case characters. This does not however affect
the Alpha lock light, this can be toggled with the XBAS
command INP(&22).

90

	front
	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78
	page79
	page80
	page81
	page82
	page83
	page84
	page85
	page86
	page87
	page88
	page89
	page90
	page91
	page92
	page93
	page94
	page95

