-

— |

[SgE 1gin e i pe
B e e
o [Ve b R daia i

Esnscein

~
?
=
=
=
—

| Eln in

-~ ~OILOIIR MICRO COMPUTER

Acknuwle@gumunt

Written By: Alan Stancliffe

PAGE
Edited By: R.M. Clarke INTRODUCT ION i L L gl U S ST 1
Our grateful thanks to Crystal Research Limitaed of 1. MODES OF OPERATION o2 oot ianma o 2
Torquay, for their kind permission to reproduce DIRECT MODE 5 iaeiips it s e Saner i) ik P,
extracts from theip manuals, and for their help in DEFERRED MODE o b P Flao +n ' .o 2
Checking this publication; and to the General
Instrument Corporation for their kind permission to 2. CHARACTER SET T R e R R T 3
reproduce information relating to the Programmab le
sound Generator. 3. NUMBERS AND STRINEEo . oo o]
NUMERIC DATA .. SERMEE oo dniid . o Sobeads 5
Tatung (UK) Ltd., reserve the right to change, alter, Integers . .. I i Sl .o o
or modify the information contained within this manual Floating-Point Numbers 6
in order to maintain or improve product performance, ScientiTie NOTRELIaN T gl La ige 6
Hexadeo Ml o0/ G000 Fasi e Byt 8
ISBN:1-85086-003-3. 1st Edition 1984 STRING EWTAL Gadiins e ol bl e U 2 9
1SBN: Concatenation of Strings 9
ISBN: String and Relational Operators .. 10
Copyright (c) Tatung (UK) Ltd., 1984 4. VARIABLER /oo Jois Wy e 12
All rights reserved, No part of this publication ma. y O ARRAYEE sl b e e T 14
be reproduced, stored in an information retrieval
system, or transmitted in any form or by any means, 6. EXPRESSIONS AND OPERATORS e | Tk .o 16
electronic, recording or otherwise, without the E P R S R e e il e b iabee e 16
permission, in writing, of Tatung (UK) Ltd. ARITHMET IG ORERATENS . .o asli snllai 16
RELATIONAL CNFEER IO & vei et e aiias 19

Tatung (UK) Ltd.,

Computer Division,
BRIDGNORTH,

LOGICAL OPERATORS RO e T U e 19

F,. THE EDITDR . . [I | L] - . - 9 - - - ED

Shropshire WV15 6BQ wCREEN CONTROL CODES . e e Ll . 20
f!ﬂ:.‘;]c EDITDR [1] & @ - - ® @ . [] [I 22

First Printed in 1984 by: LaNE BEDITOR .. oo e 24

Spellman Walker Ltd.,
Bradford, West Yorkshire
ENGLAND.

PAGE

PAGHE
15, PROGRAMMABLE SOUND GENERATOR 288
||{:(’Ilﬁhl L i F
Ty BT Copiy e i A 4 REGISTER FRBOCIION TARLE 288
L I R e v es es e b 2T
14 REG S e R i s e 288
LT AL B ik o5 e se ' oo aw 21 j :
BREAK A ay ID DBTBrmIng the FIECh .. s e 289
ESC iff To Find the Register Value ., .. 290
EEAGAT e e ' Lo sy Sl g Rt e e)
9 DEVICES AND I/O ASSIGNMENT '8 To Determine the Noise Frequency . 292
DEVICE ASSIGNMENT Bl 08 e as b ~H (RAASTER f . vw| e tan we g se a e92

e PRI IH L e Rl S i) v AR RS e SR T i 293
REGISTERS 11 AND 12 .. P 294
To Determine the Enuelﬂpe Perlnd (EP) 4294
To Determine the Envelope Frequency 295
ReGIsTER Y3000 . " e) AR R 296
REGISTERS 14 AND 15 R R e R T 297
To output data from CPU to a
peripheral on 170 Fort A 297
To input data from I/0 Port A to CPU 299
TEST DED PRGN " s e me aa e 300
To use the program AL R e 301
SULINE VARIATECN &5 55 llss . s¢ 4% o 304
Relative Channel Volume 304
L S T R e e 304
o amn g e el e SRR e e R 304
SPECIAL SOUND EFFECTS SR R e 305
FORE URLY CITBCYS o« W dn o wi ik 305
European Siren Sound Effect 305
BREER I LY BTTeCt . 5 sa ‘seited 306
PR Sound EfTect i s as i ws 306
Explosion Sound Effect NS 307
Frequency Sweep Effect B v 307
Laser Sound Effect sl g e P 308
Whistiing Somh Errect - 1. G s 308
MULTI=-UNARNeL ETTEOL o av . a4 e 309
Wolf Whistle Sound Effect « .. . 309
RACE Car SOUNG TITERE & o 5 an 309

10. BASIC RESERVED WORDS 20
11. ERROR HANDLING WITHIN BASIC LY 241

12. ERROR MESSAGES WITHIN BASIC 251

13. CHAINING AND SEMI-CHAINING PROGRAMS .. 201

14. FILE HANDLING e TIRADO s S, .. 204
FILE NAMING CONVENTIONS 240 o7 oo «e 2064
Drive Nameo .. 204
File Name RPN ST ch 264
File Type L S T 264
MATCHING FILENAMES '/l Ly T5%al ee e 266
FEEE WEOUMEPTRIN (0 o 20 sl sl y . 267
ACCEDSING FPIEED . ¢ ud ¢ S8 .. 269
Sequential Access oy MGl A T . 269
Random Access i G I B | e e 270
FILE HANDLING COMMANDS+« .. 271
FELE FRMNRLING EXAMBLES 5P 0mile L. 278
a) Text File Display Program .. 278

b) Simple Mailing List -
Sequential Access 279

c) Simple Mailing List -
RENUOM ACCESE v o 5o oo 283

PAGE INTRODUCT ION
APPENDICES

TATUNG/Xtal BASIC 4 is based upon Xtal BASIC 3.0 which
has been extensively enhanced to provide extra
facilities for the user,

APPENDIX A - List of Reserved Words 111
APPENDIX B — Index to Error Messages 312
APPENDIX C - Memory Map for TATUNG/Xtal
o e 414
APPENDIX D - VDP Memory Map 315

One of the outstanding features of this BASIC is the
ability to create user defined reserved words and user
defined error messages with the aid of machine code
programming. The interpreter can be expanded by
writing appropriate sub-routines and by inserting your
own defined words in an auxiliary reserved word table

to give the type of BASIC most suited to your
particular requirements.

The Editor provides a wide range of facilities which
are not complex to use, and are designed to make the
editing process much easier than with most other
systems. There are also extensive screen formatting
facilities available to the user.

TATUNG/Xtal BASIC 4 offers many capabilities which are
normally regarded by other BASICS as enhancements to be
purchased separately by the user. For example, the
advanced graphics which make ‘use of sprites, . the fully
programmable sound generator, and the file handling
commands.,

This manual describes the facilities offered by
TATUNG/Xtal BASIC 4 and includes a iisk, in
alphabetical order, describing in detail the functions
of all the reserved words.

1

MODES OF OPERATION
There are two modes of operation in BASIC:

i) DIRECT MODE
ii) DEFERRED MODE,

DIRECT MODE
In direct mode, BASIC commands and statements are):

a) NOT preceded by line numbers.
b) Executed immediately they are enterad,

This mode is useful for debugging and for using

as a ""calculator" involving computations wi
arithmetic and logical operators,

In other words there is an immediate responas tg 1
instructions typed into the computer.

DEFERRED MODE

This is used for entering programs. Program 1inas "
preceded by a number and stored in memonry, Fs86UE
of a program is invoked by use of the RUN, CHAEN
GOTO commands. :

Line numbers may range between 1 and 65%1H and

selected arbitrarily by the user. It is recoss
that reasonable gaps be left between line numnﬂF!i
10) to facilitate the insertion of extra lineg IF

become necessary later.

Programs can begin with any line number but tHE Q
line to be interpreted will always be the lowes
number entered,

¥ e

CHARACTER SET |
TATUNG/Xtal BASIC 4 character set which consists of:-

1) alphabetic characters
ii) numeric characters
1ii) graphics characters
iv) selection of punctuation and other symbols
normally found on a typewriter keyboard.

)

The normal keyboard characters are listed below with
their corresponding ASCII code. Graphics characters
will be found in the full table given in Appendix D of
the Introduction Manual.

-
[Asc1z CHAR. HEX | ASCIT CHAR. HEX | ASCTI CHAR. HEX |
CODE | CopE CODE
f .
32 sP 20 | s2 4 a4 | iy H 48
33 ! 21 53 5 35 73 I 49
34 " 22 54 6 36 74 J 4A
35 # 23 55 7 37 75 K 48
36 $ 24 | =8 g a8 76 e
37 % 25 57 0 " a9 77 M 4D
38 & 28 58 : 3 | 78 N 4B
39 ' 27 59 : 3B 79 O A
40 (28 60 PR P 50
41) 20 | 61 =" 30 | 81 Q 51
42 ®ieanr 4. g4 > g g R 52
43 + 28 | 63 2 aF | .83 S 53
a4 2¢ | 64 @ 40 | 84 T 54
45 R A 41 85 U 55
46 : 2 | 66 B 42 1 88 vV 56
47 / 2F | 67 i < W 57
| 48 0 30 | 68 D 44 | B8 X 58
49 1 31 69 E 45 89 Y 50
50 2 32 70 E 48 90 Z 5A l
l_51 3 33 71 G 47 91 - 5B | i

o

ASCII CHAR. HEX | ASCII CHAR. HEX FASCII CHAR, HES
“CODE CODE CODE
92 A 5C 104 h 68 116 t
93 s 5D 105 i 69 117 u
94 f SE }106 J 6A 118 v
95 Ll 5F 107 K 6B 119 w
96 £ 60 108 1 6C 120 X
97 a 61 109 m 6D 121 y
98 b 62 110 n 6E 122 2
a9 c 63 T 0 6F 123 %
100 d 64 112 P 70 124 !
101 e 65 113 g 71 125 %
102 i 66 114 r 72 126 +
103 g 67 115 S 73

n
"
" :

70
TA
A
70
70
TE

3

NUMBERS AND STRINGS

there are two types of data used in TATUNG/Xtal BASIC
4!~

i) NUMERIC DATA
ii) STRING DATA

NUMERIC DATA

These can be whole numbers (integers), or floating
point numbers (reals).

Integers
Integers are whole numbers without fractions or decimal

points.

The number can be positive or negative and must fall

within the range -32768 to +32767. (BASIC supports 16
bit integers).

EXAMPLES: 44, 6, -17, 32500, -29076

Numbers 1in the pranges -65535 to -32769, and 32768 to
65535, may be accepted by integer variables. In these

cases the values are internally converted to fall in
the range 1 to 32767 and -32768 to -1 respectively

(otherwise 17 bits would be needed to store each
number). Integers, in BASIC, are shown by the % sign
after the variable name

- Floating-Point Numbers

As the name suggests, '"floating point" numbers caf B

whole numbers, or fractional numbers.

They can be positive or negative and if no li'H
given the number is assumed to be positive.

The following are examples of floating point n mk
which are also equivalent to integers.

6 -14 2650 =21
The following examples include decimal points,

7930.23 "0iT 7.4 -0.0008 -27.029

Commas must NOT be used in numbers otherwise a SYNTAI-

ERROR MESSAGE may be given.

For storage purposes, floating point numbers are

internally converted to SCIENTIFIC NOTATION.

Scientific Notation

A number in scientific notation is expressed as a BASE

NUMBER (MANTISSA) multiplied by 10 raised to i
particular POWER of 10 (EXPONENT)

NUMBER = MANTISSA x 10EXPDNENT (Power of 10)
EXAMPLE: - J
s M3 w31 2 10

In BASIC this "scientific notation" is as follows: =

4
3.265 x 10 is entered as 3.265E4 in BASIC

For a NEGATIVE power:-

—4
3:.209 x 10 is entered as 3.265E-4 in BASIC

By using Sclentific Notation very large and very small
numbers are easily handled by the computer.

The exponent range 1is given below:-
MAXIMUM - 1.701411E38
MINIMUM - 0.940396E-38

Any computations yielding a result above or below these
values will display a quantity error.

Four bytes are used to store numbers internally, one of
which represent the ''signed Exponent'!" and the other
three the '"signed mantissa'.

The "exponent" can range from -38 to +38 whilst the
signed mantissa can be up to seven digits, (any value
outside this range will cause a quantity error to be
displayed).

The full seven digits of a mantissa are used internally
for calculations but are then rounded off to six
significant figures for output. (Always use a seventh
figure if known for accuracy even though only six are
displayed).

Leading and trailing =zeros are always suppressed on
output. This avoids 1long trails of zeros either
preceding or following a number.

In practice, very large numbers or very small numbers
can be entered in "decimal'" or '"scientific notation" as
required, but may be automatically output in scientific
notation only.

1'“_—— L N - - JE - e e - = S < I IS SRR S N (- NI IR A T A PR L - ——

- Hexadecimal (HEX) Numbers
Hexadecimal numbers are to base 16, and are &sp
using a combination of numbers in the range 0O _:
letters in the range A to F. The following tahlge
the Hexadecimal characters with decimal |
equivalents.

EXAMPLE :

£1F34 equivalent to 7988 decimal

&71F34 still equivalent to 7988 decimal because
only the LAST FOUR digits are used. (i.e. the 7 is
ignored).

STRING DATA

'HEXADECIMAL' DECIMAL HEXADECIMAL
Strings are combinations of ASCII characters
0 ~ 0 8 representing letters, numbers, and symbols.
1 ~ 1 9
2 - 2 A They are useful for storing names, titles, and text,
3 ~ 3 B but can also be used to hold numeric values.
4 - 4 C
S ” 5 D A string can be any combination of up to 255
6 i 6 E characters, usually shown in quotes.
- 7 F
i EXAMPLE : ~ "HELPLESS"
EXAMPLE: HEX A7 is equivalent to 167 decimal. Nk | ZKM
"1379.76" etc.
Evaluation
7 x units = & Concatenation of Strings
1 Strings can be CONCATENATED (i.e. strung together
A x 16 = 160 (ie 10 x 16) consecutively) using the "+" sign.
Total 167

[BTRING 1]
& STRING 4

[ETRING 2) = [STRING 1 | STRING 2 | STRING 3]

+

|STHING 3’

Using HEX numbers:

1) An ampersand symbol (&) is used as a prefix to
indicate Hexadecimal numbers.
e.g: &1298 &A7 &1F34

EXAMPLE: 10 A$ = "MOUSE"
20 B$ = "TRAP"
30 C$ = A$ + B$
40 PRINT C$
RUN

2) When hexadecimal numbers are wused in numerie
expressions they are internally converted to a
decimal number, The hexadecimal number must not

exceed four digits. If more than four digits arse
entered only the LAST FOUR will be used.

-

L

-

-

-

-

-

.

.
. { This will give a display of MOUSETRAP.
=

Str;ngs and Relational Operators EXAMPLE 3
Strings can be compared using relational operators:- :
Noe c¢haracter difference detected but one string
=) KA€=,>=,> g longer,
EXAMPLES: A$ > BS "MOUSE" "MOUSETRAP""
HSMITII : HSMITEH
"MOUSETRAP" = "MOUSETRAP" "MOUSETRAP" is greater than "MOUSE'

The comparison is done character by character until MOUSETRAP > MOUSE

ﬁ Position is found in which the two differ. The
gréater" string is the one whose character has the
greater ASCII code. If no differences are found,

but.une.string is longer than the other, the longer
string is considered to be the greater,

EXAMPLE 1

Character difference on comparisan,

"STEPHEN" "DAVID"
1 '
ASCII 83 ASCII 68

.« "STEPHEN" is greater than "DAVID"
"STEPHEN" > "DAVID"

EXAMPLE 2

Character difference on comparison,

"ANDYII "A.NDHEWH
! t

ASCII 89 ASCII 82

"« "ANDY'" is greater than "ANDREW"
"ANDY" > "ANDREW"

10 al

VARIABLES

va;iables are "names" used to represent values. The
values are eilther assigned by the programmer, or as a
result of calculations/operations within the program

A "Li"a. 1 i LA] ; -
riable name” can be a combination of 1letters or

EXAMPLES: VALID NAMES INVALID NAMES
ZFBC 6BLF
SAP *YXL
LO3A7 1 798

Variables may be of the following types:-

NUMERIC & _[FLDATING POINT - holds numbers
INTEGER - holds whole numbers.

STRING - holds strings.

varigble "types" are indicated by characters which
suffix the variable '"name'.

i) Flc.-z:xting point variables are the default type
having no suffix after the variable name ;

EXAMPLE: ATC

ii) Integfr ?ariables are indicated by the presence
of a % sign after the variable name.

EXAMPLE : BX7%

12

{11) A string variable is indicated by the presence
of a $ sign immediately following the variable

name .

EXAMPLE: ZUP$

TATUNG/Xtal BASIC 4 uses the first five characters only
of a variable name. More can be entered (within the
limits of the maximum line length) however, characters

after the 5th will be ingoéred by BASIC.

EXAMPLES:

AB123%
SLOPY$
SLOPYXZ$

All three are valid variable names but the BASIC would
not distinguish between the 2nd and 3rd example because
the first five characters of each are identical.

Care must be taken to ensure that variable names do not
contain reserved words!

EXAMPLES:
TONE, LETTERS, PINCH, TERROR

All the above examples contain reserved words, as
indicated below, and could cause problems!

Igne,LETter,pINCH,tERRDR

It is advisable to keep variable names to two
characters to avoid this problem, and commonly only one
letter is used. (the only two character reserved words

are IF,UH,LN,TD,DN,FN,PI}

13

ARRAYS

An ARRAY is in effect a 1list or table full of

variables. There are NUMERIC arrays and STRING arrays.,

In the case of a 1list each element of the 1list is

numbered in order of appearance. The numbers are then
used to refer to individual elements by inserting them
immediately after the variable name.

EXAMPLE: Al(2)

This refers to the 3rd element of the array
variable A. (Array subscripts start at 0)

This is known as SUBSCRIPTING the array, the numbers,
or variables, within the brackets being the subscripts.

Lists have a single subscript and are known as one
dimension arrays.

In the case of tables there would be two subscripts

referencing individual elements in a similar manner to
map or graph co-ordinates, These are known as two
dimensional arrays.

EXAMPLE : B(2,3)

The numbers indicate vertical column and horizontal row
numbers relative to the element required.

TATUNG/Xtal BASIC 4 also caters for 3 dimensional

arrays thereby giving 3 subscripts after the array
name.

EXAMPLE : B(2,0,1)

14

:

Arrays

in higher dimensions can be supported by

TATUNG/Xtal BASIC 4, the limit being determined by the
amount of memory available at any one time.

NOTE:
i)

ii)

iii)

The array subscripts always number from zero.

Arrays containing more than 10 elements must be
dimensioned with a DIM statement to inform the
BASIC how much space to allocate for it. DIM
statements are explained in detail in a later
section of this manual. (Page 61).

If you are unfamiliar with arrays refer to the
details given in the INTRODUCTORY MANUAL.

15

EXPRESSIONS

EXPRESSIONS AND OPERATORS

Expressions consist of:—

i) Numeric Variables
ii) Numeric Data

11i)

String Variables

iv) String Data

These

relational operators.

ARITHMETIC OPERATORS

The arithmetic operators in order of

6

can be combined using arithmetic,

logical and

precedence are as

follows:-
l-DF‘ ERATOR I :
OPERATION EXAMPLE 1IMATHEMATICAL
EXPRESSION
() Parenthesis 3*%(2+6) 3(2+6)
1 Exponentiation 512 5E
(raise to power)
* Multiply 3%4 3x4
/ Divide 4/2 42
MOD Remainder 8MOD3 8+3=2 rem,?2
+ Addition 3+2 342
1
= Subtraction 2-1

16

—

1000000000000 0C

EXAMPLE ;
BASIC MATHS
B*(2+6)/293-5 6(2+6)-5
3
2

The order of operation 1in this expression 1s as

follows: -

i) Brackets evaluation

ii) Powers evaluation
iii) Multiplication and Division evaluation

iv) Subtraction evaluation

The operators are faiply +self ‘explanatory as they
relate directly to normal arithmetic functions but the
MOD operator requires further explanation.

MOD accounts for the remainder after Division -

EXAMPLE :
5MOD3 would return a value of 2 (i.e. 5+3=1 remainder
2)

7MOD2 would return a value of 1 (ie.
8MOD3 would return a value of 2 (ie.

7+2=3 remainder 1)
8+3=2 remainder 2)

The actual process undertaken to obtain these values is
a follows:-=

FOR ANY TWO VALUES 'X' and 'Y'
THEN XMODY = X-Y*INT(X/Y)

This section returns the largest

integer (whole number) 1less than
or equal to the result of the

division computation.

17

Examples of MOD:
1) For a value of X=5 and Y=3

5MOD3 = 5-3*INT(5/3)
= 5-3%INT(1.6666)
= 5-3%1
i 5MOD3 = 2

2) For a value of X=7 and Y=2

TMOD2 = 7-2*INT(7/2)
= 7-2%3
¢ o CTMODZ = 1

If the values of 'X' are negative then because of the
INT function the results are sometimes unexpected
Using the same examples as above but with X=-5 and -%
respectively we would see the following:— ’

1) -5MOD3 = -5-3*INT(-5/3)
= =0=-3%INT(-1.6666)
= -5-3%(-2)

~5-(-6)

$ -5MOD3 = 1

2) —-7MOD2

—7=2%INT(-7/2)
—7-2%INT(-3.5)
= ~7-2%(-4)

= =7+{=8)

. -7MOD2 = 1

Il

Thus we can see the following comparison:-

5MOD3 = 2 BUT -5M0D3
7TMOD2 = 1 AND -7MOD2 = 1

Il
o §

18

D
=
D
=
=
=
=
pra—

RELATIONAL OPERATORS

operators are commonly used with IF
(Page 102) for comparisons and the
TATUNG/Xtal BASIC 4 uses the

Helational
gtatements
avaluation of conditions.
following:-

» greater than >= greater than or equal to
<€ less than <= less than or equal to
= equal to <> not equal to

LOGICAL OPERATORS

Again logical operators are commonly used with IF
statements (Page 102) in conjunction with relational
operators. TATUNG/Xtal BASIC 4 contains the following

(1isted in descending order of precedence).

NOT, AND, OR, XOR (Exclusive-OR)

EXAMPLE: 10 IF(X+Y=Z)>»3 AND Y«=20 THEN 100

This performs a bit-by-bit logical AND of each numeric
expression, If both bits are set to a '1' then the
result bit is set to a '1'. If either bit 1is a 'O' the
result Bit 38 88t to '0'.

NOTE: Although expressions involving relational and
logical operators are normally used within IF
statements, they can also be used within arithmetic
expressions (a relational expression returns a value of
-1 if it is TRUE, and 0 if FALSE).

In some cases, quite a lot of space can be saved:-
EXAMPLE: IF X 15 THEN A=0:ELSE A=

This could be replaced by:= A = -=(X>15)

19

7

THE EDITOR

SCREEN CONTROL CODES

IThe control key

(CTRL), is used in conjunction with

uar?mes_nther character keys to provide the following
facilities which assist output to the screen.

1)

3)

CTRL-J Line Feed (LF)

This will create a '"line feed" (move to the next
1}ne]. In other words the cursor moves down one
line. The repeat facility on the function is
activated if the keys are held down.

When the bottom of the screen is
dlgplay- will "scroll up" one line
This duplicates the "cursor down" key.

reached, the
at a time.

CTRL-L Cursor Home and Clear Screen

This will "clear" the screen and move the cursor

to the '"Home" position (top left hand corner of
the screen).

CTRL-M Carriage Return

This will operate a '"carriage return'" with a "line
feed" (i.e. move the cursor to the beginning of

the next line). This duplicates the ENTER key.

CTRL-A Screen Dump to Printer

Will cause a transfer of the
contents to a printer (i.e.
paper).

screen display
make a hard copy on

20

5)

O

7)

8)

9)

10)

CTRL-H Backspace (BS)

simply move the cursor to the LEFT one
space at a time. The function will

This will
character

"pepeat" if the keys are held down. This
duplicates the '"cursor left" key.

CTRL-D Horizontal Tabulations (HT)

This will move the cursor to the RIGHT one
character space at a time. The function will
"repeat" if the keys are held down. This

duplicates the '"cursor right" key.
CTRL-1 TAB

This will move the cursor and display to the RIGHT
by TEN "spaces" each time. (10 being the Print
Zone value for tabbing). Again, the function will
"repeat" if the keys are held down,
CTRL-K Vertical Tabulation (VT)
This will move the cursor UP one 1line at a time

and there is a "repeat" function activated if the
keys are held down. This duplicates the '"cursor

up'" key.
CTRL-T Cursor OFF
This will turn the cursor off, should this

occasionally be required.

CTRL-Q Cursor ON

This will turn the cursor back on again as a

reversal of the CTRL-T function.

21

e - Bk SRR e EEaTETE R & W - e e o e ———

11) CTRL-=R Printer Screen Echo ON

This causes anything output to the screen to be
echoed to the printer.

12) CTRL-S Printer Screen Echo OFF

This turns the printer screen echo off reversing
the effect of CTRL-R.
13) CTRL—' Cursor Home

This returns the cursor to the '"home"
(top left hand corner of the screen).

position

BASIC EDITOR

This facility is available from the moment that you
enter BASIC and the following general points relating
to it should be noted.

It has been specifically designed to make debugging and

editing more versatile than with most other BASIC
EDITORS.

Input 1lines can be up to 126 characters long and may
OCCupy one or more rows on the screen, BASIC keeps a
note, at all times, of the start and end of each line.

If there are several lines in a listing, the cursor ma.y
be moved to any particular line on the screen in order

to make modifications, regardless of the number of rows
the line occupies,

22

ERRERRRRR

Ly

B

If a line 18 extended so that it apparently will run
into the next one, the lines below simply move down one
row to accommodate 1t.

A "modified" 1line will need to be entered into a
program by pressing the ENTER key while the cursor is

located on one of the rows of the screen containing
that line. The cursor then moves to the beginning of
the next line (NOT row).

The functions available within the Basic Editor are the
INS/DEL key, the CURSOR CONTROL KEYS, the SCREEN
CONTROL CODES (previously described), and the following
additional control codes:-
1) DELETE CHARACTER - at the Cursor
CTRL-F
or
CTRL-DEL
Either of these combinations will delete a
character at the cursor, moving the remainder of
the line one character space to the left.

2) ERASE WHOLE LINE

CTRL-X

This returns the cursor to the beginning of a line
and then erases the entire line

23

3) ERASE TO END OF LINE
CTRL-U
This will erase to the end of a line from the

current cursor position (regardless of the number
of rows the line occupies).

4) ERASE TO END OF SCREEN
CTRL-V

This will erase to the end of the screen from the
current cursor position.

5) DELETE CHARACTER - to the left of Cursor
CTRL-Y
or
DEL

This deletes the character to the left of the
cursor, moving the remainder of the 1line one
character space to the left. When the cursor is
at the end of a line, deletion acts like a 'rub
out" to the left of the cursor.

LINE EDITOR
The "line edit" mode is available primarily as an

alternative for use with programs where the "screen
editor" might not be quite so convenient.

24

ARRESRRRRRNAA RS

In "line edit" mode the only editing functions which
pperate are as follows:-

a) The "cursor left" function on the cursor control
key acts as a 'back space" and deletes characters
as it moves. All other functions of cursor control
keys are non-operational,

b) CTRL-A transfers the screen contents to a printer.

¢) Re-typing of a program line so as to overwrite the
original line,

All other control functions and cursor movements as
described in "SCREEN CONTROL CODES" and "BASIC EDITCR"™
are non-operational under LINE EDIT mode.

To wuse the LINE EDITOR carry out the
procedure: -

following

1) Type IOM 2,0
This activates an internal "switch" which then
allows the option of selecting either LINE EDIT or
SCREEN EDIT.

2) Type IOM 0,0

This now sets the '"switch" to LINE EDIT mode (i.e.
goes into line edit)

3) To return to SCREEN EDIT type IOM 0,1.

When line edit is no longer required IOM 2,1 is used to
de-activate the internal "switch".

295

NOTE:
i) During "line edit" the prompt in front of the
cursor becomes a horizontal arrow (—e) in direct

ii)

mode .
The arrow changes to a question mark (?) if an

INPUT statement is used without a specified "prompt
string".

26

EERENRRRRRY

8

SYSTEM "COMMAND KEYSY

CTRL-DREAK

gimultaneously pressing CONTROL and BREAK keys will

cause a transfer to the disc operating system from

BASIC.

SHIFT-BREAK

Holding down the SHIFT key and then pressing BREAK will
halt program execution, preserving all variables. The
CONT command can then be used to allow continuation of

program execution if required. The message "Break 1in
line..." is displayed on the screen when SHIFT-BREAK is

used.

BREAK

The BREAK key will halt program execution whilst it 1s
held down, but execution continues when the key is

released. (Variables are preserved)

ESC

Pressing the ESCAPE key causes listings and tabulations
to be aborted.

27

9

DEVICES AND I/0 ASSIGNMENT

I/0 is an abbreviation for INPUT/OUTPUT

Special forms of the INPUT and PRINT statements allow

the u§er to assign different I/0 devices to the system,
(Details of these statements are given on Page 113)

Examples of I/0 devices are:-—

PRINTERS

SERIAL OR PARALLEL DEVICES
DISCS

Each device is assigned a DEVICE NUMBER in the range 0

tq 254. Thus there can be 255 "output devices'" and 255
"input devices",

Ingut and output can also be handled to and from files
which apre s.tcwed on Disc. All file I/0 is handled
through device 255 which is assigned internally and

more 1information is given on this in a later section.

DEVICE ASSIGNMENT

Thﬂeerdevices are currently assigned under the BASIC as
supplied and are as follows:-

10

BASIC RESERVED WORDS

This chapter contains all the reserved words used 1n
TATUNG/Xtal BASIC 4, They are listed in alphabetic

arder for ease of reference.

lach reserved word 1s given at the top of a page and
then further explained under the following headings.

Syntax:

Indicates the '"'grammatical structure" of the particular
word when used in BASIC,

The following notations have been adopted in this 1list
which is not intended to be exhaustive but covers most
of the BASIC syntax requirements, Other symbols have
been used where these are more meaningful or where the
parameters used are restricted to particular values;
these exceptions are explained more fully 1in the
individual commands to which they refer.

1) « » encloses the syntax requirements where the
information required does not easily fall into
one of the categories 1listed below. The
chevrons are not included in the text entered.

L=
=»
=»
=
=
=
L=
e
=

[1ndi ' 1 luate to
DEVICE | 2) J indicates an expression which must eva

r : bk ol l a number in the range of 0 to £59. If the

' i integer

0 Sc result of the expression 1is not an in .

1 TEEH Keyboard then it is rounded down to the nearest integer
Printer N/ZA a1 ik
2 Serial Serial :

L itk (RS232) i (RS232) | 3) I as above (J) but the range is increased to O

. to 65535, or -32768 to 32767.
NOTE: Device 0 is the only one which

"Screen Editor",

AR

utilises the
4) N a numeric expression which evaluates to a real
number (i.e. not necessarily an integer).

28 29

5) V¥ a variable name which can be either a numeric

or string variable,

6) file a valid file name including (optional)
dTlVE number, filename, and (optional)
file descriptor. For full description of

valid file names see page 264.
Purpose: Details the function of the word within BASIC
and -ﬂffers. any necessary explanation to aid further
understanding of how the word is used.
Examples:
Where appropriate examples are given,

Related Reserved Words:

L%sts other reserved words used in conjunction with the
given word, or of a similar type.

30

ERREERERRRRE RS

ABS

ABS (Absolute value)

Syntax: ABS (N)
Where N is any numeric expression.

The ABS function returns the absolute

Purpose:
i.e. ignores s1gns,

the numeric expression,
returning positive values.

Example
X=ABS (-3.14159)

This will return a value of 3.14159 in X,

Related Keyword : SGN

31

value of
always

ADC

ADC {5nalngue Eigital Eﬂnuepter] £) The following program can be used with a joy-stick

control connected to the Analogue 1 port,
Syntax: ADC (J)
10 X = ADC(0O)

20 Y = ADC(1)*3/4
J0 DRAW TO X,Y

40 GOTO 10

Where J is a ''channel number" given as 0,1,2, or 3.

Purpose: This 1is a function which reads the value at
the Analogue port for the channel specified in J.

When RUN, this program will draw lines on the
screen corresponding to the movement of the
joystick.

Channels 0 and 1 relate to Analogue 1 socket.
Channels 2 and 3 relate to Analogue 2 socket.

The value returned from each channel is in the range 0
tO 290k

Related Keywords: BTN

The most common application of this function is to
incorporate joy-stick control into a program. The
values given to channels 0 and 2 determine horizontal
movement, and channels 1 and 3 vertical movement for

Joy—sticks connected to the respective ports (Analogue
1, Analogue 2),

EXAMPLES:

1) A = ADC(0)
PRINT A

This will read the current value at the analogue 1
port for channel 0, and place it in A. The value

can then be output to the screen by the PRINT
statement.

32 33

SRR RRRRY

AND APPEND

AND
APPEND

Sylltax: iE-‘l'.a.‘tEIuEHt > MD < Statemer'.t o Hynt.! : AFF END < ' ileh SU
[¥
Purpose: This 1is a LOGICAL OPERATOR wused in the

evaluation/comparison of statements and/or numeric
expressions.

«file® must be a legal "file name" as described 1in the
section on File-Handling (Page 264).

g/ is a string variable name (but not a string array

EXAMPLES:
element), and is the "file descriptor".

10 IF (x + y)e>: -
y)€>»3 AND y = 20 THEN 100 Purpose: This is a File-Handling Command which is used
to write extra information at the end of a '"segquential

file", when to OPEN the file and read up to the end
would be very inefficient.

This will transfer program execution to line 100 if

;x + y) 1is not equal to 3 and at the same time y =
0

It is similar to OPEN (Page 163), the difference being
that the internal file pointer moves to the end of a
file instead of the beginning, and no record length 1s

specified.

20 A = 15 AND 7
This returns a value A = 7.

30 K = INCH
AND &DF If the file specified by <file>» does not exist on the

: disc then a NO FILE ERROR will be given.
This returns upper case ASCII whether upper or lower v

case entered. = 1
xample:

Related Keywords: ELSE IF NOT OR THEN XOR APPEND "O:SILLY.DAT",FD$
. - »
This will perform the followlng:-

a) opens the file SILLY.DAT on the disc currently
in drive 0, and moves the pointer to the end of
the file so data may be added.

b) assigns FD$ as the file descriptor.

Related Keywords : CREATE CLOSE OPEN

34 355

pppoeoooouoOUUuC

ASC

ASC {ﬂmerican §tandard Eode For Information

Interchange - ASCII)

Syntax: ASC (estring expressions)

Purpose: This 1is a Standard String Function which
returns the ASCII value (in decimal) of the first
character of the string given in the function.

To display the values given by this function use the
PRINT command as a prefix.

EXAMPLE::
X=ASC ("ABC")

This will return a value of 65 in X. X contains the
ASCII value of A (i.e. the first character of the

string).

69 1s the decimal code for A.

Related Keyword : CHR$ STR$

36

jorooeooonuoounoc

ATN

ATN (Arctangent)
fByntax: ATN (N)
Where N is a number or a numeric expression.

Purpose: This 1s a Standard Function which returns the
arctangent of N, in radians, within the range - P1/2 to

+P1l/2
EXAMPLE :

X=ATN (1)

Returns a value of 0.785398 radians 1n Xinkieee RPI/4
radians or 45°)

Other Transcendental Functions:

ASN(X)=ATN(X/SQR(1=X*X)) arcsin(x)
ACS(X)=(PI/2)-ASN(X) arccos(x)
HCS(X)=(EXP(X)+EXP(-x))/2 cosh(x)
HSN(X) =(EXP(X)-EXP(-X))/2 sinh(x)
HTN(X)=1-2/ (1+ESP(X*2)) tanh(x)

Related Keywords : COS SIN TAN

37

AUTO

AUTO (Automatic Line Numbering)

Syntax: AUTO L1,L2

L1 is the line number from which automatic numbering is
to commence,

L2 is an increment value for the numbers to be used in
the automatic numbering sequence,

Both L1 and L2 will default to a value of 10 if they
are not stated.

Purpose: This is a System Command which gives automatic
line numbering while entering a program.

EXAMPLES:

AUTO 100,5 Starts at line 100 and continues
105,110,115,etc.

AUTO 100 Starts at line 100 and continues

110,120,130, etc.

AUTO, 20 Starts at line 10 and continues
30,50,70,etc.
AUTO Starts at line 10 and continues

20,30,40,50,etc,

When AUTO has been invoked, the next 1line number
automatically appears for the user to continue after
the ENTER key has been pressed,

Each number is displayed Just as if it had been typed
from the keyboard,

38

. - peg e = = e

prooeeooonoounOt

The automatic line numbering

deleting the current
produced,

line

may
number

be abandoned

which

AUTO

by
has

Ihe "editing mode" is not affected by the use of AUTO.

Related Keywords:

39

BCOL

BCOL (Backdrop colour)
Syntax: BCOL X

X can be a value from O to 15, each number representing
a particular colour as listed below.

Purpose: This is a Display Command which sets the
backdrop colour according to the value of X,

E Colour 5 Colour
0 Transparent 8 Medium Red
1 Black g Light Red
2 Medium Green 10 Dark Yellow
3 Light Green 11 Light Yellow
4 Dark Blue 12 Dark Green
5 Light Blue 13 Magenta
6 Dark Red 14 Grey
7 Cyan 15 White
EXAMPLE :

BCOL 6

This would set the backdrop colour on the screen to
Dark Red.

When BASIC is loaded the backdrop colour 1s set to 4
(Dark Blue)

Related Keywords : GCOL TCOL

40

BEEP

BaeEep
Hyntax: BEEP J
Purpose: This is a Sound Command which causes an 880Hz

tone to be sounded for a length of time indicated by
the value of J which must be in the range 1 to 255.

J-VALUE TIME |
1 100ms E
2 200ms
3 300ms
4 400ms
5 500ms

255 25,500ms

EXAMPLE :
BEEP 20

This will cause the tone to be sounded for a length
of time equivalent to 2000ms (2 seconds).

Related Keywords : MUSIC PSG

41

N e NN IR VIR T VTR TYVEEERT VT TEERT TV TEEERl D P A T Y

BINS

BIN$ (Binary String)
Syntax: BIN$(I,J)

Purpose: This 1s a Machine Code related command which
returns the Binary number which corresponds to the
decimal number given by I.

J indicates the number of binary digits to be returned
in the result and must evaluate to an integer which is
less than, -or equal to, 16. If J is omitted then 16

binary digits are returned (the number being '"padded"
with leading zeros if necessary).

If the value of J is too small for the binary number to
be returned, then only the J least significant digits
will be returned.

EXAMPLE :
X$=BINS(86)
This will return a result of 0000000001010110 in X$
X$=BIN$(86,8)
This will return a result of 01010110 in X%

Related Keywords : HEX$

42

BTN (FPrean Hnl[uu}
Byntax: BTN (J)

Where J is given as O or 1.

Purpose: This function returns a value of 0 or 1 for a =

press button connected to the Analogue 1 and Analogue 2
ports.

For the Analogue 1 port J=0
For the Analogue 2 port J=1

When the button is pressed a value of 0 is returned.
When the button is not pressed a value of 1 1is
returned.

A common application of this function relates to the
firing button incorporated with joy-stick controls.

EXAMPLES:
2} B = RBINS)
PRINT B
This will return a value (either O or 1) in B
according to the status of the Analogue 1 port.
The value can be output using the PRINT statement.
2) The following program can be used with a joy-stick

control, which incorporates a firing button,
connected to the Analogue 1 port

43

EEE TR FEEENY T Y IR Y f e Y l_'lll_lll-ll'_II-II-Il_ilmllmlfm i

10 X = ADC(0)

20 Y = ADC(1)*3/4

30 IF BTN(O) = O THEN GCOL RND(16)
40 DRAW TO X,Y

20 GOTO 10

When RUN, this program will draw 1lines on the
screen corresponding to the movement of the
joy-stick., Pressing the firing button will change
the colour of the graphics on a random basis an
given by the statement in line 30 of the program,
The statement could be changed to give different
results to the condition as shown below.

30 IF BTN(Q) = O THEN CLS

This will clear the screen each time the firing
button is pressed.

Related Keywords: ADC

nn-nnn-H-nnn-"l-nlnnnn-lHI-IHI-lHI-lﬂ--H-lﬂl-'""'""ﬁﬂﬂt

CALL

CALI
Syntax: CALL I

Purpose: This is a Machine Code related command which
calls a machine code subroutine which starts from the
address given by I. The related machine code subroutine
must be terminated with a &C9 (return) code. This will
automatically return control to BASIC.

EXAMPLE: CALL 3840

This causes execution of machine code from location
&OF00 (i.e. HEX equivalent of 3840 decimal).

NOTE: The pointer to the current position in the
program text will be available at the top of stack, if
required,

Syntax: CALL (E)

Purpose: E is passed to the floating point accumulator
within the BASIC interpreter. Machine code 1s then
executed from the address set by means of the PTR 9,1
command. This defines the ldécation for the machine code
routine. Again a &C9 (return) code returns control to
BASIC, and the contents of the floating point
accumulator form the argument of the CALL function,

EXAMPLE: A = CALL(B)

The value of B is loaded into the floating point
accumulator. On return from the machine code routine,
the contents of the floating point accumulator are

passed into variable A.

Related Keywords:

45

CHAIN

CHAIN
Syntax: CHAIN L
Where L, 1f given, is a line number,

Purpose: In this case CHAIN is similar to the RUN

command except that all variables are preserved and can
be passed from one program to another.

EXAMPLES:

CHAIN - Executes the program currently in memory.

CHAIN 50 - Begins execution at line number 50.
Syntgx: CHAIN <file»

Where <file®» must be a legal '"file name" as described
in the section on File Handling (Page 264)

Purpose: In this case the file specified by <file» is
loaded from the disc and executed. This is similar to
RUN <file>» except that all variables are preserved,

EXAMPLE :

CHAIN "PROG" -~ This loades and executes a program
called "PROG" preserving any variables,

NOTE: Programs can be combined using a combination of
CHAIN, HOLD, and MGE commands. this could be useful in
large applications which may be divided into smaller
programs, all using the same variables. Further
explanation of this technique can be found on page 261,

Related Keyword : RUN

46

CHRS

CHR%E (Character Htring]
Ayntax: CHRE(J)

PFurpose: This is a Standard String Function which
peturns the single character string whose ASCII value

is6 given by J.
EXAMPLE :

The decimal ASCII value 75 is that of the character
K. Therefore the string K will be stored in X$.

Related Keywords : ASC STR$

47

CLEAR

CLEAR

Syntax: CLEAR I1 , I2

I1 when specified, sets up the topmost location of
memory available to BASIC. Iz, when specified
allocates the size of the "stack". g
Purpose: This Command clears all variables, arrays and
gtrings from the system. The top of memory would be set
in order to leave space for object (.OBJ) files (1.0,
machine code routines/data). Normally, no space is

reserved, and the stack size is left unchanged if 12
omitted.

18
If I1 is set above the top of RAM, or set too low, or

too large a stack size (I2) is set, then a MEM FULL
ERROR will occur.

The stack is normally 256 opytes and cannot be smaller,
Normally it would not be necessary to increase this
size unless large numbers of nested FOR loops

subroutines, and expressions are used. (If a STACK FULL
ERROR is encountered it is usually because subroutines
are being ENTERED but not RETURNED from!)

EXAMPLES:

CLEAR, 500 - sets 500 bytes of stack space.

CLEARRTFFF - sets the top of RAM for BASIC
programs and variables to 7FFF .
Thus machine code programs cgn
be placed in the area from BUDDH
up.

CLEAR &AFFF,300 - sets 300 bytes of stack space,

and the top location to &AFFF.

Related Keyword : PTR

48

CLOSE

CLOBE
Syntax: CLOSE Sv1,Sv2,..,SVn

Hv1,8ve2, etc. must be string variable names (but not
string array elements),

Purpose: This is a File-Handling command which performs
the following:-

Closes any open files given by the file descriptors
GV1 to SVn, these files having previously been opened
using OPEN, CREATE, or APPEND. If no file descriptors
are specified then all files currently open will be
closed. (no error is given if there are no flles

open).

If any of the string variables SV1 to SVn specified 1is
not the file descriptor for an open file, then a FILE
ERROR will be given. (Note that the file descriptors
are internally marked so that the BASIC can distinguish
them from normal strings).

On closing a file, the remaining contents of the
appropriate buffer is written to the file if the last
operation performed on it was a write. The file
descriptors are then set to null strings, which makes
the space available for wuse by variables or other

files, and the directory updated.

NOTE: In addition to preforming the above processes
CLOSE induces an automatic PRINT #O: INPUT #O (see page
183, 113). This will cause all output and input to go
through the console and the CLOSE command can be used
at any time when these two statements are required (it
is shorter).

Related keywords : CREATE OPEN

49

- W

CLS

CLS (Clear Screen)
Syntax: CLS N
Where N has a value of 32 or 40

Purpose: To clear the display screen or send a form
feed character to any other selected output device.

If current output is to the screen then: -

If N = 40 (i.e.CLS40) this will clear the screen and
set up the 40 column Display.

SELR =32 (1.9.0L832) this wili clear the screen and
set up the 32 column Display.

If N is omitted, the screen will clear, 1leaving the
current Display unchanged., f

For any other output device:-

A "form feed" character is sent to the selected device.

Related Keywords:

20

CONT (Continue)

Byntax: CONT

Purpose: Causes an interrupted program to resume
without clearing the variables.,

May be used after a program has been terminated with a
S5T0OP command, During the '"stopped" period, the user may
look at or alter variables without <causing any
problems, but any attempt to alter the program itself
will result in a CONT ERROR.

CONT may be used to re-start a program which has been
halted by SHIFT-BREAK. This is quite a useful aid when

debugging a program.

Related Keywords: END RUN STOP

o1

bl]!

CONT

COS

COS (Cosine)

CREATE

CREATE

Syntax: COS (N) Ayntax: CREATE <file>,8V,I

Where N is an angle, or a numerical

exXpression
returning an angle, given in radians.

fhe file must be a "legal file name" as described in
the mection on File-Handling (Page 264).

Purpose: This is a Standard Function which returns the

9V 18 a string variable name (but not a string array
COSINE value of N.

slement) and is the file descriptor.
g | is the random record size (length) and is given as a
value in the range 0 to 65535, indicating the number of

X = C08 (1.0472) characters involved.

This gives a value of 0.499998 in X. (1.0472 radians

Purpose: This is a File-Handling Command which creates
is 60°)

and opens a new serial data file as follows:-
g 4 B i a) deletes any existing file with the same nameé as

given in the command.
The value 0.866025 will appear on the screen,

(0.5236 radians is 30°) b) creates and opens a new empty serial data file

having the name given in the command, and
identified by the string variable 35V, to bpe
structured into data records of length I bytes. I
is only specified for ''random access'", if
"sequential access" is to be applied then Z '3
omitted (in fact a random record 1length of O
indicates that sequential access 1S to be
performed) .

EXAMPLE:

This example shows an entry made in degrees using the

RAD function to convert the angle within the COS
function,

PRINT COS(RAD(30))

The value 0.866025 will appear on the screen. EXAMPLE :

Related Keywords: ATN DEG RAD SIN TAN CREATE "0:SILLY.DAT",FD$,15

This will perform the following:-

e 53

b)

c)

. — - b B . - . L T LA L s b L = = - 2 8 £]

creates and opens the file SILLY.DAT on the disa
currently in drive O (if any file of the same name
already exists on the disc it will be deleted
prior to the new empty file being created).

assigns FD$ as the file descriptor.

sets up for "random access" using a 15 character
length record size.

Related Keywords: APPEND CLOSE OPEN

o4

DATA

DATA
Ayntax: DATA datal , data2 , ... , datan

'he items of data (datal, data2, etc) may be any of the
following types.

A) numeric

b) strings in quotes.

¢) strings without quotes, providing there are no
leading spaces or separators.

Purpose: This statement holds items of data required
within a program. It is used in conjunction with the
READ statement.

Any number of DATA statements can be wused within a
program, each containing as many or as few items as are
convenient

DATA statements may appear at any position 1in a program
but will be read as though they were all in one block.

They are ignored when encountered during the running of
a program in the same manner as REM statements. (see
Page 194).

The SEPARATOR between items of data is normally a comma
(,) but this may be modified by use of the SEP command
(see Page 206) (This will also affect INPUT and READ
statements within the same program).
EXAMPLE:

DATA 6, '"NO", YEB

Related Keywords: READ RESTORE

90

e ——

In line 100, 6 is passed to the defired expression X+
as the dummy variable X and hence Y tatkes the value 0,

" If a function call is made before the appropriate DEF
FN statement has been made a FN DEFN ERROR will occur,

Related Keywords: FN

DEG

DEG (Degrees)
Syntax: DEG (N)
whaere N is given in radians.

Purpose: This is a Standard Function which converts the
number expressed in radians given by N, to degrees.

EXAMPLE :

DEG (0.523604) - returns a value of 30 degrees,
EXAMPLE :

PRINT DEG (0.523604)

This will cause the value 30 to appear on the

Related Keywords: ATN COS RAD SIN TAN

P N T T N T e T T TP T T T YTy Y

DEL

DEL (Delete)

Syntax: DEL L1,L2

Where L1 and L2 are given as line numbers of a program,
L1 will default to O if not specified.

If L1 is LARGER than L2, or if L1 is LARGER than the

largest line number of the program, a RANGE ERROR will
occur,

Purpose: This is a System Command which deletes all
lines from a program in the range of L1 to L2.

EXAMPLES:
DEL 100,199

This will delete all program lines with numbers from
100 to 199 inclusive,

DEL,155

This will delete all 1lines up to 155 inclusive
(value of L1 omitted therefore defaulting to 0).

Related Keywords:

60

DIM

DIM (Dimension)
fiyntax: DIM <array name» (I1,I12,13..,In)

IThe array name can be either a numeric or string
variable.

[1,12,13 are numeric expressions, known as subscripts,
ln the range 0-65535 and represent the number of
@#lements 1in an array.

[f an array is not dimensioned it is assumed to have a
maximum value of 10 for each subscript (dimension)
which is referenced. Therefore if subscripts are less
than 10 the DIM statement may be omitted.

An array must only be dimensioned once 1in a program.
If dimensioned more than once a DIMENSION ERROR will
occur,

Purpose: This 1is wused to reserve storage space for
numeric or string arrays.

An array with only one subscript 1s known as one

dimensional,
A (1)

An array with two subscripts 1s Kknown as two
dimensional.

A LT, IZ)

An array with three subscripts 1is known as three
dimensional.

A(1V;,12,1I3)

61

.

R e N R T T YY1 Y YT T Y T § T DY | Faaml 'y ¥ Py ¥ f ey 8 mll_ll_"_"_"—ﬂ_n_l_ﬂ

Each subscript represents the maximum number of
elements of each dimension in the array. TATUNG/Xtal
BASIC 4 will support multi dimensional arrays, the
limit being determined by the amount of memory
available at any one time.

Several arrays may be dimensioned in one DIM statement
using a comma as a separator.

DIM AtE1,12), BII), C(11,12.1I3) etc.
EXAMPLES:

DIM A(50)

Defines array A as having one dimension with storage
for 51 elements (0 to 50).

DIM B(60,20)

Defines array B as having two dimensions with

storage for 61 x 21 elements (i.e. 1281 elements in
total).

DIM A(50), B(20), C(40)
Defines three arrays A,B,C, with one dimension each,
containing storage for 51, 21, and 41 elements

respectively.

Related Keywords:

62

DIR

DIR (Directory)
HByntax: DIR <file types?>

Puppose: This is a Disc Command which displays the
DIRECTORY of a disc, showing the files specified by

file types (<file types=> being the required file name
lypes - see Page 264 for file name conventions).

[f «file types®» is omitted or given as "*.,*", all the
files in the directory of the disc in the current

default drive will be listed.

Locked files are indicated by a * symbol in front of
their names in a directory listing.

EXAMPLE :
DIR

This will give a display of all the directory for
the disc in the default drive, similar in format to
the one given below (the disc contains five files 1n
this example).

: *XBAS.COM $ XYZ . XBS
: XYZ.ASC : ROUTINES.OBJ
: *INVADERS .ASC

This represents a list of the five files contained

on the disc. The file name is given, followed by
the type name for each file (see Page 264 for file
types). The colons (:) are displayed to indicate

the beginning of each entry.

63

DOS

DOS (Disc Operating System)

Syntax: DOS

Purpose: This 1is a System Command and is used
transfer control to the '"Disc Operating System'.

Usually used in "Direct Mode".

Related Keywords: MOS

66

L0

DRAW

DRAW
Syntax: DRAW x1,y1,z1 TO x2,y2,z2 TO ... TO xn,yn,zn
x and y can have values in the range -32768 to +32767.

z is a qualifier which defines the type of line to be
drawn in accordance with the table given below.

If z is omitted a value of O is assumed.

Purpose: This is a Graphics Command which will draw a
line, in the current foreground colour, from the point
given by the co-ordinates x1,y1 to the point given by

co-ordinates x2,y2 etc.

If the first pair of co-ordinates is omitted, then
drawing will take place from the last plotted point.

VALUE - z TYPE OF LINE

0 Continuous line
1 Continuous unplot (i.e. line drawn 1in
background colour)

2 Dotted line, 2 dots ON and 2 OFF
3 Dashed line, 4 dots ON and 4 OFF
4 Dotted-Dashed line, 10 dots ON, 2 OFF,
e ON. 2 OFF
B Dashed-Dotted line, 2 ON, 2 OFF, 2 ON
10 dots OFF.
EXAMPLE:

' 41 \
pRAW(40,70\ T0 (90,80} 3 To (100,90) T0 (40,70

,;Eﬁﬂilﬂi

:; -"{JHHNE-I '
‘e

-
|

67

—— e L _ . _
ke bl L I - T TS T F TR VY T T TS Y Y

DRIVE

This will draw a continuous 1line from the
{4{},?{}}. to the point (90,80) and a dotted line to
the point (100,90). Then draw a continuous iin*
back to the point (40,70). In other words L

tfiangle has been drawn with two sides as solid
lines and one side dotted.

point DOHIVE (D s “rliﬂ}

AByntaxi DRIVE J

) is mpecified as a number from O to 3 depending on the
number of drive units available within individual

Related Keywords: ELLIPSE ORIGIN PLOT POLY UNPLOT syastems,
[f the drive specified in J 1s not available on the
system a DRIVE SELECT ERROR will be given.

Purpose: This command sets up the default disc drive as
specified by drive name for any subsequent access to
A disc.

EXAMPLE :
DRIVE 1
This selects drive 1 as the default drive.

Related Keywords: DIR ERA LOAD REN SAVE

68 S0

2 ELLIPSE fe =]

ELLIPSE

EXAMPLE |

Syntax: ELLIPSE X,¥,R, T,z ELLTIPEE 100,100, 50
Purpose: This command draws an ellipse or a circle

A eirele of radius 50 is drawn with its centre at
depending on the values of the parameters given. .

co=ordinates 100,100 (T defaults to 4/3 and z to a

' i gontinuous line)
X,y are the co-ordinates of the centre for the ellipse

and can have values in the range -32768 to +32767. Related Keywords: DRAW ORIGIN PLOT POLY UNPLOT

R 1s the value of half the horizontal axis of the
required ellipse. \Oeys,

T is a qualifier and is given by the ratio of the two
axes as follows:-

T _ VERTICAL AXIS
~ HORIZONTAL AXIS

If T is omitted it defaults” to 4/3 and a circle of

radius R is drawn (owing to the aspect ratio of the vDU
screen being 4:3).

The value of z is a number in the range O to 5 which
indicates the type of line in accordance with the table
given below. (If omitted z will default to 0).

O - Continuous line.

1 - Continuous unplot (i.e. line drawn in background
colour),

2 - Dotted line, 2 dots on 2 dots off.

3 — Dashed line, 4 dots on, 4 dots off.

4 - Dotted-dashed line, 10 dots on, 2 dots off, 2 dots
on, 2 dots off

O - Dashed-dotted line, 2 dots on, 2 dots off, 2 dots
on, 10 dots off.

70 71

NE T T Y -y Yy - . MR NI RTINS sl i farrEs s sy v 10 DS B TSI 1§ VS § e Ta———

ELSE

Syntax: IF «condition> THEN <«statement » ELSE estatement »

Purpose: This command is used in conjunction with the
IF - THEN statement to provide an alternative course of
action.,
EXAMPLE :

IF X = 10 THEN 100:ELSE 50

If x equals 10 then execution is transferred to line

100. If x does not equal 10 then the program
branches to line 50,

Refer to the IF statement (page 102) for further
information on the use of ELSE.

Related Keywords: GOTO IF THEN

72

END

FND
Byntax: END

Purpose: This command is used in deferred mode i.e. as
a line of a program.

Ihis command terminates the execution of a program.
[t is not strictly necessary when the end of a program
coincides with the highest 1line number and 1in such

cases can be omitted.

Related Keywords: CONT STOP

73

IR I IR AP TSRS R I A RSSSR IR TSN RI VTR N T 1 1 e v vl b Vw1) Viemmmy | § Ve f T e i e Y

EOF

EOF (End of File)
Syntax: < statement » EOF «statement »

Purpose: This command is used in relation to File
Handling and invokes a specific action following
detection of the end of a file during processing.

EOF is used within the following statements.

ON EOF GOTO "Line No"
ON EOF GOSUB '"Line No"

Either of these two statements could be wused in a
program involving file handling. If an "end-of-file"
1s detected then a GOTO/GOSUB is made to a particular
routine which would carry out a predetermined course of
action, The last statement of this routine should
direct execution back into the main program. Execution
would then continue from the statement immediately
following the one which detected the "end of file",

When either of the two statements are used, an internal
flag is set in order to activate the above procedure.

OFF EOF 1is used to turn off the ON EOF mode. Any
subsequent end-of-file encountered will then cause an
END OF TEXT ERROR to be displayed. However, when a

program "ends" in the normal way, the ON EOF is
automatically turned off.

74

EXAMPLE |

|0 . - -

;** ’ = — - oy

i) - -

40 ON EOF GOTO 120
-
ﬂ'l_'.[:n

In this example any "end-of-file" detected after
line 40 would cause a branch to a routine starting
at line 120. This routine would then carry out a
predetermined course of action in respect of the
"end-of-file" before returning execution to the main

program.

Related Keywords: GOTO GOSUB OFF ON ERR

75

el e e e e e e i e - R R L - AR LR . L RRdL . b, . Ixdagl . . (§ghd; . _ ‘S8 4: . ‘;R&48.._ .. ‘@88t _ _ ‘;&d8: . ‘B8 4&. __ . J;842;. _ _ \|;8881 __ |I§BB#; _ _ i}§) I-I!H

ERA ERL

ERA (Erase) I RL {Lirﬂr line number)

Syntax: ERA < file » Syntax: ERL

Fyrpuse:l This is a_Disc Command which will erase the Purpose: This function is wused in error handling
file, given by file from a disc in the current routines and returns the line number at which the last
default drive (see Page 264 for file name conventions). error occurred, See Page 248 for further information

on error handling.

If <file » does not exist then a NO FILE error will be

given, EXAMPLE:

If efile>» is a "locked" file then a FILE LOCKED error
will be given.

10 PRTNT "DOS"

The spelling mistake in 1line 10 would generate a
SYNTAX ERROR. ERL would now contain 10 and PRINT

ERL would then display 10

If the write-protect of the disc is in operation a DISC
LOCKED error will be given,

The default drive may be changed or re-selected by use

Related Keywords: ERR ERR$ ON
of the DRIVE command (see Page 69).

Related Keywords: DIR DRIVE

76 { g 4

ERR

ERR (Error)

Syntax: ERR

Purpose: This command returns the value of the last
error generated.

EXAMPLE :
PRINT ERR

This will
generated,

display the value of the 1last error

ERR can also be used in conjunction with the ON command
as follows:-

ON ERR GOTO L
ON ERR GOSUB L

Where L is a line number.

For further information relating to ON ERR refer to
ERROR HANDLING section on page 248.

Related Keywords: ERL ERR$ GOTO GOSUB OFF ON

78

LRl e L L4 _ _ _ R 88. _ _ _ || l'll_ll—lli_llml-l'_lll TEEFRIITARERRINEIEFaEEE R VS eemy | VYEFery 11 REEEEl I 1 TRl TR YRR A Y

ERRS

ERRg (Error string)

Byntax: ERRS$

Purposes: This function is wused in error handling
without

pautines and returns the error string message,

the word "ERROR'", corresponding to the last error which
gocurred, See Page 248 for further information on

arror handling.
I XAMPLE:

10 PRJUNT "ONE"

A SYNTAX ERROR is generated in line 10 due to the
incorrect spelling of PRINT.

PRINT ERR$ will now display 'syntax'

Related Keywords: ERL ERR ON ERR

79

T I TITEENN T T reeewn T erew Ty e VT Ty VT T 1 VTSN | P TS R 1 Ty Y Iy T T T ey

EVAL

EVAL (Evaluate)

Syntax: EVAL(€string expressions)

Purpose: This is a Standard Function where the string
expression is calculated as if it were a
expression and returned as a numeric value.

numeric

The string expressions must be syntactically correct as

a numeric expression otherwise a SYNTAX ERROR will
occur.

EXAMPLE :
A = EVAL ("10*3+4")

10*3+4 is a string expression but is treated as if it

were a numeric expression and the value 34 is returned
into A.

Related Keywords: VAL

80

EXP

EXP (Fxponent)

Ayntax: EXP (N)

Purpose: This is a Standard Function which raises the
gxponential, e, to the power given by N.

(f N exceeds 87 an OVFL ERROR (overflow error) will
secur (since the result would be greater than 1E39).

& has the value of 2.71828.

EXAMPLE :

X=EXP (12)

12

This will raise e to the power 12 (i.e. e) and

store the result 162755 in X

Related Keywords: ATN LN LOG

81

FILL

FILL
Syntax: FILL Xy, ¥,J

x and y are the co-ordinates of a required point and
can be in the range -32767 to +32767.

J can be a value in the range 0 to 15, each number
representing a colour as listed below.

O Transparent 6 Dark Red 11 Light Yellow
1 Black 7 Cyan 12 Dark Green

2 Medium Green 8 Medium Red 13 Magenta

3 Light Green 9 Light Red 14 Grey

4 Dark Blue 10 Dark Yellow 15 White

5 Light Blue

Purpose: This is a Graphics Command which waill fill in
colour J an area of the screen which has its perimeter
drawn in a foreground colour and which encloses the
point x,y.

This command will fill in foreground if point x,y is
background or in background if the point is foreground.
If J is omitted the colour of the fill will be the
current graphics colour for the fill type (i.e.
background or foreground) unless J is declared.

EXAMPLE :

10 CLS:GCOL7,0:0RIGIN128,96
20 ELLIPSE 0,0,60:FILL 0,0
30 GCOL,8

40 POLY 6,0,0,45,,1:FILL 0,0
50 END

This example draws a cyan-coloured disc, and then draws
a red hexagon inside it.

82

EXAMPLES

=
@

* X1,Y1

Xy

N

In the examples illustrated above:-

If point X,Y is specified then the command will fill
the given polygon to its boundary.

If point X1,Y1 is specified then the command will fill
the screen outside the polygon.

If X2,Y2 is specified then the command will fill the

associated polygon and then spill out, beca_use the
shape is not fully enclosed, and fill the remainder of

the screen.

NOTE: A 'STACK FULL' error may occur when FILLing
around text. This is caused by overflow of the 'FILL'

stack.

Related Keywords: DRAW ELLIPSE GCOL ORIGIN PLOT POLY
TCOL UNPLOT

83

I R I L T T IR eRai IV I ami v I e Eni VPV anl F I Tenant 1 1 i ewEml 1 F Vel P D P Y

FMT

FMT (Numeric Output Format)
Syntax: FMT J1,J2

Purpose: This command is used to format numeric output
for PRINT statements and STR$ functions.

J1 gives the number of figures to be printed in front
of the decimal point, and J2 the number of figures to
be printed after the decimal point. The sum of J1 and
J2 must not be greater than 8 (maximum precision of the

system 1s only 7 significant figures) otherwise a QTY
ERROR occurs,

If the actual number of figures in front of the decimal
point is less than that specified by J1, then leading
spaces will be printed,

If the number of figures in front of the decimal point
is greater than that specified by J1, then the output
defaults to "scientific notation". Scientific notation
may be forced by setting J1 to 15.

If the number of figures after the decimal point is
less than that specified by J2, then trailing zeros are
printed up to the required number of figures.

If the numbers of figures after the decimal point is

greater than that specified by J2, the last figure
which complies with J2 will be rounded up or down
accordingly (see examples)

Normal output format is to 6 significant figures and
scientific notation is invoked if the magnitude of a
number 1is greater than 1lE6 or less than 1lE-2. Trailing
zeros are always suppressed in normal output.

84

gy

of processing involved with a particular

On conclusion ¢
normal output can be restored by useé ©

FMT command,
FMTO, O,

EXAMPLES :

FMT4,2:PRINT5692.347 - displays as 5692.35
FMT4,2:PRINT347.6932 - displays as 347.69

FMT3,2:PRINT 5678.346 - defaults to a display of
5.67835E+03

FMT3,4:PRINT543.45 - displays as 543.4500
FMT15,2: PRINT 567 .9876 - displays as 5.68E+02

If the sign of a number is given, it is not counted

with the number of figures but appears in the leading
space at the start of the entire number.

EXAMPLES:

EMT3,3:PRINT-1.73205 - displays as - 1.732

FMT3,3:PRINT-42.763 - displays as - 42.763

Related Keywords:

85

FN

FN (Function)

Syntax: FN V1(Vv2)=E

Furpnge: This command is used with DEF to provide the
facility for creating functions not normally contained

within the BASIC.
< I 4F

Related Keywords:

For further information see DEF page

DEF

TRTRESRIANRESaRIINIssaailNlIensaliiissasiisinanninilesni R R iaent _ ISR | 1 1NN} | FEEEN 1§ IEEEE] 1 FEEee) 1 e T Y TT———
| FOR
FOR
HByntax: FOR V = N1 TO N2 STEP N3
Purpose: This statement sets up a loop within a program
to repeat a sequence of operations. It is wused 1in

86

conjunction with the TO, STEP and NEXT statements.

V is the CONTROL VARIABLE which must be a numeric
variable.

he values, or numeric expression string values, for
N1,N2, and N3 have the following functions.

N1 is the INITIAL VALUE from which V starts the loop.

N2 is the LIMIT VALUE of V, which, when passed, ends
the loop.

N3 is an optional STEP VALUE which is the amount by
which V is incremented on each cycle of the loop. %
"STEP N3" is omitted then a step value of +1 1s
assumed.

The FOR statement indicates the beginning of the loop.
The NEXT statement indicates the end of the loop. The
NEXT statement is followed by the control variable to
link it with the relevant FOR statement.

The program loops between these FOR and NEXT
statements. On reaching the NEXT statement V is
incremented to the next value and program execution
jumps back to the FOR statement. The loop is repeated
until V has incremented past the value of N2

Any program lines between the FOR and NEXT statements
are executed on each cycle of the loop.

87

EXAMPLE:

10 FOR I =1 TO 10 STEP 3
20 NEXT I '

The control variable, I, starts at 1 (initial value)

for the first loop and then increments by 3 (step
value) for each repetition of the loop until the

limit value of 10 is exceeded.

M FOR I =1 TO 10
20 NEXT I

In this case the step value has been omitted and
therefore a value of 1 will be assumed. Thus I will
start at 1 and increment by 1 until it exceeds 10.

The necessary operation statements of the loop
immediately follow the FOR +statement.

EXAMPLE :
%0 FOR I = 1 TO 10
20 A =1 + 3
30 PRINT A
40 NEXT I

In this instance the expression A=I+3 is evaluated
and displayed for each value of I from 1 to 10 (I
increments by 1 after each evaluation).

If the control variable is missing off the NEXT

statement, then it is assumed to be linked with the
previous FOR statement.

88

EXAMPLE

10 FOR I = 1 TO 10
Ek’{} PRINT "RED"

40 NEXT

I is not needed in line 30 to complete this.

NESTED LOOPS:
FOR-TO-NEXT statements can be nested (i.e. one loop

contained within another).

In "nested" loops the NEXT statement takes on the
following format.

NEXT V1,V2,..,Vn
This is the equivalent of:-

NEXT WV1:NEXT V2;..;NEXT Vn

EXAMPLE:

10 FOR I = 0 TO 7

20 FOR J = 5 TO 19 STEP 2
30 K = I+J

40 PRINT K

50 NEXT J,1

This example will print out all the values of I+J
using values of I from O to 7 and values of J from 5
to 19. The processing will be executed in the

following manner.

89

........ i 4 414 " n Lk o T TTRESETrrre——~ PTIEESEI 1I ISERRi VIO ER I I N IR mI I IOE TR T 1 INEENt IR IEeEmr L1 ITONI 1T INeNnl 17 Imemr 11 Temat T 1ieami i Verm TR T YT Yo 1 U

1

FOR TIROT VALUE OF iw) et 40 (EOR 2w 4130 10
A sy () FOR X = 0. TO 11
G4 i : 5 J0) FOR Y = 1 TO X+13
o i UGS 40 PRINT CHR$(170)+MUL$(CHR$(203),16)
6 it 00 'y o +CHR$(170)
A A 50 NEXT Y
04 A% w in 60 PRINT MUL$(CHR$(32),18)
0+ 15 = 15 70 FOR Y = X+15 TO 40
0 ET + 7 80 PRINT CHR$(170)+MUL$(CHR$(203),16)
& +CHR$(170)

O + 19 = 19 — g0 NEXT Y
FOR SECOND VALUE OF I=1
%+ Ay T 120 END
1T R e B
4.7 %8 CROSSING
1 + g = 10 '
T %11 = 12 Although loops can be nested they must not be allowed
R to cross over each other.
Wi+ A5 = 16
1 + 17 = 18 r—'*IDFORx
1 + 19 = 20 gg e e

L : 40 FOR Y
This process is repeated for each value of I until 50 ———-
all the required results have been printed. 60 NEXT X

70 ——==
EXAMPLE :

s 80 NEXT Y

The format shown above would not work and 1is an

The following example illustrates how documentation
example of bad logic in setting up the loops.

often presents the 1listing in a format which

indicates the nested loops.
NOTE: If the value of the control variable V in the

NEXT statement does not correspond to an active FOR
loop, then a NEXT ERROR will be given.

o 01

TANEESEERI II P eI RIS R IR P PR AR VIR R R P PR RN YRR YR IR Er TR T N I I R IRl TR IEEIEI VR IEEENI 1 I IR R D I AN EREI VD PR T D IR A P ARSI A D YRR R AP EEERNI RS

If the control variable V is omitted from the NEXIT

statement, then the last FOR statement is assumed to be
the one required.

There is no limit to the amount of nesting allowed with
loops other than the capacity of the memory to deal
with the necessary program operation.

Related Keywords: TO STEP NEXT

92

GCOL

GCOL (Graphics Colour)

e i———

Syntax: GCOL J1,J2

Purpose: This is a Display Command which selects the
colour of graphics displayed on the screen according to
the values of J1 and J2.

J1 represents the Foreground colour (i.e. the colour of
the pixels forming the line or character shape) and J2
the Background colour (the colour of the surrounding
pixels). J1 and J2 can be any value from O to 15, each
number representing a particular colour as listed
below. If either J1 or J2 is omitted, and no previous
GCOL command has been given, then J1 will default to
White (15) and J2 will default to Dark Blue (4).

0 Transparent 8 Medium Red

1 Black 9 Light Red

2 Medium Green 10 Dark Yellow
3 Light Green 11 Light Yellow
4 Dark Blue 12 Dark Green

5 Light Yellow 13 Magenta

6 Dark Red 14 Grey

7 Cyan 15 White

EXAMPLE: GCOL 10,6

Any graphics produced following this command will
appear in Dark Yellow (foreground) on a Dark Red
background.

NOTE: This command only directly affects the graphics
pixels as they are printed on the screen and does not
change the overall backdrop colour of the screen.

Related Keywords: BCOL TCOL

93

LRl AR _ BB AL __ . BRRl B RN .
ot

I Y TeeT 7 Y rey TR ¥ ¥ T
e T T TII TR T e T Y f T s B F e Y P Ty 1 Py b Y Ty e vy SRR LR LR R L L L L w e . . o s

GOSUB

Ihisn program prints out the following format:-
GOSUB (Go to Subroutine)
NAML |
Syntax: GOSUB RIS R e S T o R T e et i
ADDRESS
Purpose: This transfers execution of the program to a S S ot b A
subroutine which starts at the line number specified TELE:
If 1line number is not specified, or does not exist, a OCCUPATION:

BRANCH ERROR will occur.

Execution continues from the specified 1line number
onwards until a RETURN statement (Page 199) is
encountered, whereupon execution is returned to the

line immediately following the original GOSUB
statement.

Lines 20, 40, 60, and 80 cause a branch to the
subroutine contained within lines 100 to 140. This
subroutine carries out the repetitive process of
printing the broken 1lines between each of the
titles. Line 140 returns program execution each
time to the 1lines immediately following the last

EXAMPLE: executed GOSUB.
1 10 PRINT "NAME:* Related keywords: GOTO POP RETURN
[~ 20 GOSUB 100 4
2 30 PRINT "ADDRESS:" @
[40 GOSUB 100 2

g 90 PRINT "TELE:"™ ‘_ﬁ

60 GOSUB 100 3
4 70 PRINT "OCCUPATION:" e

80 GOSUB 100 4

90 END = e

100 FOR I = 1 TO 16

110 PRINT ' .

120 NEXT I

130 PRINT _I
140 RETURN = o o

95
94

L e IR _EERC LN e o T 2. mm - L ik e . ..—....—'l|_|-|l—llll—|ll—ltl_ll_!|l_I'_'lfl_'ll|—'_l"'_'"'—l"l!

GOTO HEXS

-
GOTO HEX$ (Hexadecimal String)
Syntax: GOTO <line number » Syntax: HEX$(I,J)
- ‘ & y & b
Puring: Th%s traﬁsfers program execution directly to a Purpose: This command returns a Hexadecimal string
specified line. (i.e. creates a BRANCH). which corresponds to the number given by I (in

: : decimal).
If the line number is not specified or, does not exist,

then a BRANCH ERROR will occur. J dictates the number of characters to be retﬁrned in

the Hexadecimal string and must be in the range 1 to 4.

" g If J is omitted a value of 4 is assumed.

;g Eﬁiwﬁ I The Hexadecimal number will be '"padded" with leading
Ego I = TI+1 zeros if necessary.

;g EE;O it If the value of J is too small for the HEX number to be

returned, then only the J least significant digits will

_ . be returned.
This program prints the value of I in line 20 and

adds one to it in line 30. Line 40 causes program EXAMPLES:

execution to return to line 20. Try running the

program. 1t should print out 0,1,2,3,4 —-— etc. X$=HEX$ (1234) - returns the string "04D2"
until the program is terminated by pressing X$=HEX$ (100,2) - returns the string "64"
SHIFT-BREAK. X$=HEX$ (4708,2) - also returns the string "64"

(only the two least significant characters
are displayed as dictated by the value of J
being 2).

Related Keywords: GOSUB IF ON THEN

Related Keywords: BIN$

i 97

HOLD

Syntax: HOLD L1,L2

L1 and L2 indicate the first and last line numbers of a
If omitted, L1 will default

range to be held in view.
to 0 and L2 to 65535,

Purpose: This is a System Command which "holds" a range
of lines from a program "in view"
execution in isolation from the
program.

for manipulation or
remainder of the

The "non held" part of the program seems to disappear;

in fact it is still present in memory but cannot be
accessed directly.

EXAMPLES:

HOLD 100,199 - Holds the range of lines from 100-199
inclusive,

HOLD 100 - Holds all lines from 100 upwards,

HOLD,199 - Holds all lines up to, and including, 199,
This provides two facilites:-

i) The range of lines held can be renumbered and
thereby moved to another area of the program,

11) Another program can be appended to the range of
lines held "in view".
EXAMPLES:

1. To RENUMBER a section within a single program.

98

11V I TEEEEE I VT D N N N i I N I N I T T T T T T T TR AR TRREER R R ¥ 1 Ty

Using the following program, the area outlined 1is
to be renumbered so as to move it to the end of
Lhe program.,

10 FOR I =1 TO 5
20 PRINT "*";
40 NEXT I

40 FOR B
T

60 NEXT B ;
70 FOR I =1 TO 5

80 PRINT "#"
00 NEXT I

The section required is selected from the program
using HOLD 40,60.

The held section is renumbered using RENUM 100,10
(Page 196) to change the line numbers to 100,110,
and 120,

The MGE command (Page 144) is used to replace the
section in the program and bring the "non-held"
part back "in view'.

The final result when listed then appears as below
with the original held section now in 1ts new
position.

10 FOR I = 1 TO 5
20 PRINT "*";

30 NEXT I

70 FOR I = 1 70 5
80 PRINT "#"

00 NEXT I

100 FOR B = 6 TO 10
110 PRINT B

120 NEXT B

99

NOTE: It is important that the section renumbered is
not renumbered to lines that exist within the non-—held

sections. If in the above example the held section was
renumbered as RENUM 70,10 then two 1lines

could be
created for each line number 70, 80 and 90

2. To append another program.

Starting with the following initial program.

10 FOR I =
20 PRINT I
30 NEXT I

1709

The whole program is held using HOLD, 30.

The second program can then be loaded without
affecting the held program.

TOPrOR 1. =26 TOYD

20 PRINT I
30 NEXT I

The second program is then renumbered using RENUM
(Page 196) such that its line numbers are greater
than the last line number of the held program.

40 FOR I = 6 TO 10

90 PRINT I
60 NEXT I

100

he MGE command (Page 144) is then used to bring
the two programs together giving the following
result.

10 FOR I =1 TO 5
20 PRINT I

30 NEXT I

[20 FOR T = 6 TO 10
50 PRINT I I
lED NEXT I

CAUTIONARY NOTES:

wWhen renumbering, care must be taken in the selection
of the new line numbers. Any duplication of line
numbers will result in BOTH lines being listed in the
final program.

The line numbers of the '"non-held" part of the program
are not affected by the renumbering process, but any
line number references following GOTO, GOSUB, RUN,
THEN, ELSE, RESTURE, contained within the non-held
lines will be altered accordingly. (This is obviously a
most necessary and useful facility when moving sections
about within one program but care should be exercised
in respect of this when adding a second program).

Hold is also used in conjunction with CHAINING and

SEMI-CHAINING of programs. This is dealt with 1n more
details on Page 261 of this Manual. Note also that RUN
and CHAIN will restore a HELD program.

Related Keywords: CHAIN MGE RENUM

101

FETEEY T YR N TRy § § pasaaees g ¢ masaearary § @ waaeaeany g @ paescroy 8 N Y

IF

IF
VARIATIONS:

Syntax: IF e«conditions» THEN statement s ELSE estatement »
IF e condition> THEN L1 ELSE L2

Purpose: This allows the evaluation of conditions so
that a choice of execution can be made, depending on
whether a condition is TRUE or FALSE (i.e. it is a
Conditional Branch instruction). The IF command is used
in conjunction with the THEN and ELSE commands.

LT and L2 are line numbers to which execution will
transfer according to TRUE or FALSE CONDITIONS. The
following format will also produce the same result.

IF €«condition» GOTO L1 ELSE L2

THEN =statement®» is the statement executed if the

scondition» is TRUE. The ELSE options being ignored in . . EXAMPLES:

this case.
IF B=7 THEN 70O ELSE 120

ELSE «statement» is the statement of execution if the
<«condition» is FALSE. In this case the THEN options
are ignored. ELSE is optional and quite often becomes a
redundant part of the statement, in which case it is
omitted,

-— IF B=9 GOTO 90 ELSE 50

ELSE 1is optional in both the above cases and if
omitted execution will transfer to the next line of
the program if the condition is FALSE.

EXAMPLE :
NOTE: The formats may be mixed, replacing either of the

lines, L1 and L2, with a statement but the following
points must be observed.

IF A=3 THEN PRINT "YES'": ELSE PRINT "NO"

If A does equal 3 the PRINT "YES" becomes operative

(i.e. the TRUE statement). i) If L1 is replaced by statements there must be a

separator (:) between the last statement and the

If A does not equal 3 the PRINT "NO" becomes ELSE.

operative (i.e. the FALSE statement).
ii) A line number must always follow the GOTO if that

ELSE's must not be NESTED but the following does format is used.

however work.
EXAMPLES:

IF...THEN...ELSE IF...THEN...ELSE...
IF C=5 THEN PRINT "YES":ELSE 90

IF D=9 GOTO 120 ELSE PRINT '"'NO"
IF A=20 THEN 70 ELSE PRINT "WHITE"

Related Keywords: ELSE GOSUB GOTO THEN

102
103

INCH

INCH (Input Character)

Syntax: INCH

Purpose: This is a Standard Function which waits for

the next input character and then returns the ASCII
value of that character.

This function 18 quite useful for

instructions as for example at the end of
section.

pauses in
a page or

EXAMPLE:
PRINT INCH

This will cause the machine to await the next input

character and then display its ASCII value on the
screen, .

Related Keywords: INCH$ INPUT KBD KBD$

104

THTEEREL I VTR I I IR 1§ VTR 11 IR O N N N N T e e R e E R s

INCHS

INCH$ (Input Character String)
Syntax: INCH$

Purpose: This is a Standard String Function which waits
for an input character, and then returns it as a
one-~character string. This function 1is wuseful for
single-character responses such as Y/N (YES/NO), 1in
respect of "prompts" on the screen, and performs in a
similar manner to the INPUT statement (see Page 111).

EXAMPLE :

10 PRINT "DO YOU DRIVE?"
20 PRINT

30 PRINT "TYPE Y FOR YES, N FOR NO";:A$=INCHS$
40 PRINT

50 PRINT "YOU HAVE TYPED:'";A$

This program would produce the following display:-
DO YOU DRIVE?

TYPE Y FOR YES, N FOR NO

The machine would then await the 1input character
(Y/N) before continuing to display the following
(assuming Y was the character typed in).

YOU HAVE TYPED:Y

NOTE: This function does not "echo" the key character
back to the screen. If this is required then either

PRINT the "string'" as soon as it is input, or use the
alternative format INCH$(J).

105

e

Syntax: INCH$(J)

Pu : : lati
rpose: This variation differs from INCH$ in that it
1 |

wait ' '

iy giuzzraan input gtrlng with a number of characters

e {i i% {pnllke ;NCH$, each character will‘b;
P 1.e., displayed on the screen), unless

the IOM command (s
ee Page 117 .
susped GaNALAY bf Chara3£5r5) has been activated to

No '
numspeclal characters are recognised, and the ex
er of characters specified by J must be input =t

This ' 1 ‘
o dZchtlnn 1is especially useful for file input since
not react to selected characters (unlike

INPUT), and ther
efore can be
mach ib et £ 4T aa used to read program or

Related Keywords: INCH
¥ INPUT INPUT# KBD K RINT

106

INP

INP (Input)

syntax: INP(J)

wWhere J represents the address of an INPUT/OUTPUT port

in Hexadecimal.

Purpose: This is a command relating to direct input

from any 1/0 device.

The user INPUT/OUTPUT port for example, ig at 1/0
address &32 SO this will be the value of J each time

this command 18 used to access the port.

The value returned DYy this command will be a number 1in

the range 0 to 255

EXAMPLE:

A% = INP(&32)

This will read the current value at the user

INPUT/OUTPUT port and place it 1in A% .

PORT ASSIGNMENTS:

Programmable Sound Generator.

ADDRESS (HEX) MODE FUNCTION

03 READ Inactive
WRITE write to PSG
02 READ Read from PSG
WRITE Latch Address
00 READ/WRITE | Software Reset for PSG

01 (+ FDC)

107

e N N T T e I T T N N T T ey sy T T F T Ty T e "

L . _ LRl _ _ _ LERBL _ __ 0 BEs . JRERL . - _ bR EEE . o o LR B L L LR L Ll -

Video Display Processor (TMS9129). Auxiliary Command/Status Register

ADDRESS (HEX) MODE FUNCT ION Anuuluu'{HExll MODE | FUNCTION !
08 READ/WRITE | VRAM Data 20 READ RO PFIRE! Button 1

b1 'FIRE' Button 2

b2 Printer "BUSY"

b3 Printer "PAPER EMPTY"
b4 Printer "ERROR"

b5 GRAPH/ALPHA KEY

b6 CONTROL KEY

b7 SHIFT KEY

09 WRITE ONLY | Register Data

Programmable Communication Interface (8251).

ADDRESS (HEX) MODE FUNCTION
10 READ/WRITE | Data Register
11 READ/WRITE | Control/Status register

Floppy-Disc Controller (FD1770)

WRITE bO KEYBOARD INTERRUPT MASK

= 1 to mask. J
b1-b7 not used
hibic.... . A -

ADDRESS (HEX) MODE FUNCTION
: Analogue - Digitial Convertor Mask
18 READ/WRITE | Status/Command Register
19 READ/WRITE | Track Register ADDRESS (HEX) MODE liFUNCTIUN J
1A READ/WRITE | Sector Register
1B READ/WRITE | Data Register = 24 WRITE ONLY] bO = 1 to mask.

b1-b7¥ not used
Alpha-lock LED
22 READ/WRITE | Toggles with each port

access (Reset lights LED)
5 | :]

ROM Select Port

ADDRESS (HEX) MODE FUNCTION
24 READ/WRITE] Toggles within each access
(ROM Selected on RESET)

Disc-Drive Select Port

DDRESS (HE DE F § & 1

'"FIRE' Button interrupt mask [ﬁ s - i '_]

» 23 WRITE ONLY| bO Drive 1

ADDRESS (HEX) MODE FUNCTION b1 2

it b2 3 =1 to select
25 WRITE/ONLY] bO = 1 to mask b3 4
b1-b7 not used .
| b4 Side Select

W

108 109

TERRITEEEERIERIEEERNAIRFESSEARIIESSFITREESEEINIRSSSEI ISR TR ARERET I A EREES 1 A e (i] | 4] IR 11

Counter — Time Circuit (Z80OACTC)

LﬁQDRESS (HEX) MODE FUNCT ION]

28 READ/WRITE | Channel 0 Control/Data
register

29 READ/WRITE | Channel 1 Control/Data
register

2A READ/WRITE | Channel 2 Control/Data
register

2B READ/WRITE | Channel 3 Control/Data

register

s

Parallel Input/Output (Z80APIO)

'ADDRESS {HEX)r_ MGDEH_[;UNCTIGN' g I
. 30 READ/WRITE | Port A Data register
"1 (Printer)
31 WRITE ONLY | Port A Control register
(Printer) |
32 READ/WRITE | Port B Data Register
33 ‘WRITE DNLY;IPart B Control register

Analogue - Digitial Converter (uPD7002)

ADDRESS (HEX)

FUNCTION

Control Register
Data Register

Related Keywords: OUT WAIT

110

INPU

INPUT
Syntax: INPUT <Prompta» sV1,v2,..,Vn

he Prompt is optional, but if used must be a string in
quotes followed by a semi-colon(;).

Vi,Ve, etc are numeric or string variable names,
strings, or strings within quotes. When more than one
variable is used they are normally separated by a
comma, but this can be changed by previous use of the
SEP command (Page 206).

Purpose: This statement is used to input data from the
keyboard during the execution of a program.

If the "Prompt" is omitted then BASIC will introduce
its own prompt in the form of a question mark (7?7),
unless the system is in ''screen edit" mode, in which
case no question mark will appear. This facilitates
the input of a 1line without any unwanted characters
appearing before it. Alternatively, if the prompt 1is
declared as an empty string the "?" will not appear on
the screen.

1f the number of entries typed in exceeds the number of
variables listed in the INPUT statement, then only the
first values entered will be used and the message EXTRA
IGNORED is displayed.

If the number of entries typed in is less than the
number of variables listed in the INPUT statement, then
a further prompt (?) will appear.

If a string is entered when numeric data is expected,
then the non-numeric data will be ignored; O will be

assumed if the first character of the string 1is

non=numeric.

111

II _I lll-l I—III-II_'II_I.-'I_"_"_I-'_. T TESISSEEE ¥ B pomssasn W uSm——"— N SIe W N e ey

\?

EXAMPLE:

10 INPUT "NAME,STREET,HOUSE NUMBER ' ;NAMES,STREET$,N

The INPUT statement causes execution of a BASIC program
to be interrupted and then it waits until the required
data is input from the keyboard.

EXAMPLE:

10 REM PROGRAM TO CALCULATE COST OF ITEMS,
20 INPUT "COST OF ONE ITEM IN PENCE ";I
30 INPUT "NUMBER OF ITEMS ' ;N

40 PRINT "TOTAL COST 1S ",I*N

50 GOTO 20 '

This simple program calculates the cost of a
quantity of items, knowing the cost per item.

It illustrates a use of INPUT. The program does not
commence execution until variables I (cost of one
item) and N (number of items) are typed in from the
keyboard; a result then appears on the screen,

Related Keywords: INCH INCH$ INPUT# KBD KBD$ PRINT
PRINT#

112

IL._...._.._...._—...—“ L S (A s e s s

INPUT#

INPUTH# (Input Device Number)
Byntax: INPUTH#J

Where J gives a 'device number" assigned to a device
and in the range 0 to 254,

Purpose: This statement assigns a new input device (eg.
serial port) indicated by the value of J.

All input statements, such as INPUT and INCH$, will be
received from the new device selected by J until
another INPUT# statement is encountered to change the
device selection.

When a program ends or aborts, either through an error

or as directed from the keyboard, the input device
reverts back to the keyboard (i.e. device 0).

[f INPUT# is wused in direct mode the corresponding
input statement must appear in-*the same line.

The following two input devices are currently assigned
within the BASIC language provided.

T T
DEVICE DEVICE NUMBER

KEYBOARD 0

SERIAL PORT 2
(RS232) l , |
L wr—

EXAMPLE :

INPUT#2

All input following this statement in a program will
be received from the serial port.

113

INPUT# can also be used in the same manner as a normal
INPUT statement but the '"device number" must be
followed by a semi-colon (;) so as to distinguish the
remainder of the statement. INPUT# may NOT contain
prompts.

EXAMPLE:
INPUT#2; X
EXAMPLE :

10 PRINT#1

20 INPUT#2;X

30 IF X= 0 THEN END

40 FORI = 1 TO X

50 INPUT A$: PRINT A$

60 NEXT I

70 INPUT#O

80 PRINT#0;"DO YOU WISH TO CONTINUE " Y$=INCHS$
90 IF Y$="Y" THEN 10 ELSE END

This program illustrates the use of INPUT# and also
PRINT# (see Page 183). Data must be provided
externally to the RS232 serial port in order to run
this program successfully.

X represents the number of items of data to be read.
First X is read, then data is accepted from 1input
device 2. This data is printed, as it is read, on
the printer (output device 1).

After X items have been read both input and output

revert back to device 0 (keyboard and VDU screen)
for further instructions from the user.

114

USE WITH FILES
fyntax: INPUT# SV,J; <variable list>

Purpose: This 1is a File-Handling Command which takes
input from the file specified by the file descriptor

8V, starting at the first character of the record given
by J.

For information relating to the application of this

command refer to the section on FILE HANDLING, Page 264
of this manual.

Related Keywords: INCH INCH$ PRINT PRINT#

=k ks

gits A ...—-u-—-n_lll—ll_lllI-Ildh-lll_ll_ﬂl_ll_ﬂlI-IIII_H_!II_II_III_lllﬂllull_ll_ui'I_

INT (Integer)

Syntax: INT (N)

Purpose: This is a Function which returns the largest
INTEGER value less than or equal to the value given by

N.

EXAMPLE:
X=INT(4.62132) - returns a value of 4
X=INT(-4.62132) - returns a value of -5

(Note the effect on negative numbers),

EXAMPLE :
PRINT INT(9.72513)

The value 9 will appear on the screen,

Related Keywords: MOD

116

Y FRREEC 1 RRERY 10 VERORY 1 CERERY | FOSRRE 1 URUR Y RRERY 1 VRERRYVOURR! ! IRRERE GUUR 0 ERRRN |0 CEORD | VORRE 1 CRRER 0 o oumamy

|

IOM

M (Input Output HDdE]
Syntax: 1OM J1,J2

where J1 1is in the range 0 to 15 and J2 can take the
value O or 1.

Purpose: This command is used to set up various input
and output conditions. J1 declares which condition
(L.e. which bit of the 2 IOM bytes) is to be set to the

value declared in J2.

12 of the 16 IOM bits have been allocated to particular
input and output options. The remaining 4 bits are left
available for future expansion.

Until this command is used all the IOM BITS are set to

14 Thus all the conditions are operative as specified
for when the BITS are set to ON.

IOM BIT ASSIGNMENT:
BIT O (Edit Mode):

When 1, this gives SCREEN EDIT mode.

I

il

When = 0, this gives LINE EDIT mode.

EXAMPLE: IOM 0,0
This invokes LINE EDIT mode only.

BIT 1 (Echo Mode):

When = 1, all input characters are echoed to the
output device (eg. input from keyboard is echoed to
appear on output screen)

A 117

L L I T EEEE——

When = 0, there is no echc of characters and LINE
EDIT mode 1is automatically selected regardless of
the setting of BIT 0 (otherwise the whole system
locks up).

HiT 4 (Trailing Space Mode):

When = 1, trailing spaces will be printed after any
NUMERIC output.

EXAMPLE : IoM 1,0 When = 0, no trailing spaces are printed and numbers

will run into one another (in the same way that

This would prevent echo of characters eg. from :
strings do normally).

keyboard to screen.

BIT 5 (Leading Space Mode):
BIT 2 (Switch Mode): e e
When = 1, a leading space is printed for numeric
output of positive numbers, or alternatively a
negative sign for the output of negative numbers.

When = 1, the system automatically reverts to LINE
EDIT mode when a program runs, and back again to
SCREEN EDIT mode when the program ends or is
abandoned.

When = 0, no leading spaces are printed. The
1 1 h " n n 1
When = 0, the automatic change of EDIT mode is examples below show a comparision of this effect
vented l.e. the current EDIT mode 111l be
Ezintained L;FUFE during and after a pr:;ram is 1OM 5,1 IOM 5,0
run) ; i 10 A=456 10 A=456
20 B=765 20 B=765

30 PRINT A;B 30 PRINT A;B

BIT 3 (Breaks Mode):

This displays This displays

When = 1, this allows the use of the SHIFT-BREAK
456 765 456765

keys to interrupt a program, and EOF to indicate an

"end-of=file",
BIT 6 (Automatic LINE FEED Mode);

f When = 0, program interruption is not available from

the SHIFT-BREAK keys, and an "end-of-file" will only
be indicated by the last block in a file being
detected. (This is useful for reading files that may
contain ANY characters as part of the data eg.
"program files".

118

=
ﬁulluulnnlliﬂlllnlllﬂlllnlllﬂlllﬂlllﬂlllﬂlllﬂIIIHIIIHIII“!ll“5“

When = 1, this outputs a 1line feed character
whenever a new line is output. In other words the
BASIC thinks it is sending a CARRIAGE RETURN/LINE

FEED at the end of each line. (The Print Head moves
to the beginning of the next line down).

Wwhen = 0, this outputs a carriage return only (i.e.
Print Head returns to the beginning of the same
line).

119

' I-H-“-"-H_H.ﬁ“ﬂ-m_l-ll_u USRS AR LI

The setting of this BIT has NO affect on device 0 (the
display screen), thus normal PRINT statements to the
screen are unchanged.

It is useful when set OFF for reducing the size of a
file on output, since the Line Feed code is ignored in
input of a file using PRINT#. However, some files may
need the Line Feed code, in which case this BIT should
be set ON.

BIT 7 (Expand TABs):

When = 1, the TAB character is expanded to the
required number of spaces (eg. the comma (,) is
expanded to produce a 10 space zone in PRINT
statements).

when = 0, the actual TAB character itself is output
as an ASCII code, and is then transmitted to the
output device in use.

EXAMPLE : IOM 7,0
This TAB character is output as an ASCII code and

transmitted to the output device for interpretation
(eg. printers which have no special TAB settings).

Thus the format of the output on a device can be
controlled from the software of the computer.
BIT 8 (Printer Port definition)

When = %, the printer port is defined as the
CENTRONICS PORT.

When = 0 the printer port is defined as the RS232-C
PORT.

120

=
|
| —
E
|
=

1T O (Combined output selection)

wWhen = 1, this causes output to the selected output
device only.

When = 0 this causes output to device 0 (VDU) as
well as the selected device. '

BIT 10 (Printer Echo)
When = 1, output is to the current device only.

When = 0 this causes the PRINTER to "echo" the
current output device.

This command is mutually exclusive with IOM bit 11.
BIT 11

When = 1 this inhibits the modification of "ESC" and

"FF" to the VDU when the VDU "echos" the current

output device.

When = 0, there is no inhibition of the functions.

This command is mutually exclusive with IOM bit 10.

AS A FUNCTION:

IOM may be used as a function to return the current
setting of any of the BITS.
EXAMPLE: PRINT IOM(3)

This will display the current setting of BIT 3 (i.e.
either O or 1) on the screen,

Related Keywords:

121

i‘_ll-I-II-II-II-II-II-II-II-II_H-ll_ll-llulmmw—_u

KBD

KBD (Keyboard)
Syntax: KBD

Purpose: This is a Function similar to INCH (Page 104)
but only scans the keyboard for input. It does not
wait for an input character.

This function returns a value of 0 if no character is
input, or the ASCII value if one has been input.

A useful application of this function (and also KBD$)
can be seen in ‘'space invader" type games where
horizontal and vertical movement of an object is
controlled by allocating certain keys from left/right
and up/down movement. The object appears to wait for a
response from the particular keys but without halting

program execution (i.e. other objects on the screen
continue to move).

See also KBDS$.
EXAMPLE::
x = KBD

This will return the ASCII value of any character,
input from the keyboard, in x.

Related Keywords: INCH INCH$ INPUT KBD$

122

KBD$

KR (Keyboard String)
Ayntax: KBD$

Purpose: This is a String Function which performs in
similar manner to INCH$ (see Page 105), except that it
does not wait for an input character, but will return a
null string if no character is available.

Ihis function 1is only operative with the computer
keyboard, irrespective of what alternative input device
is in use at the time, whereas INCH$ responds to all
input devices.

This function can be used in the same format as INCH$
(see Page 105) bearing in mind the points of difference

indicated above.

Related Keywords: INCH INCH$ INPUT KBD

123

BN R R RN N T RN R NN DR N R Rt tmea i et me

REY

KEY
Syntax: KEY N, <string expression »

Where N ;s the function key number and the data .is
the particular function to be allocated to that key

Furpnsg: The KEY command allows the user to program the
8 special "function keys" 1labelled FO to F7 on the
keyboard, according to individual requirements.

The key numbers are 0 to 7 in "unshifted" mode (as
labelled) and 8 to 15 in shifted mode (i.e. each key
can be used for two separate functions)

BAS?C‘ réeserved words are stored as tokens for
efficiency. ASCII characters can also be stored,.

Thg total storage capacity for all 8 keys is 128 bytes.
This can be allocated to one key or shared between the
16 functions of all 8 keys.

To display the contents of the functi
ction keys use h
KEY LIST command. ¢ i

Notes on Use:

Each time a programmed function key is used, the BASIC
statement stored in the string expression is displayed
on the screen and ENTER must again be keyed to execﬂte
the gtatement. Alternatively, when programming the
function key, GRAPH-ENTER may be keyed after the BASIC
statement: this inserts a carriage return at the end of
the statement and therefore when the function key is
pressed execution is automatic.

124

The ftunction keys may be programmed in direct mode or
indirect mode (i.e. from within a program for use with

that program).

Ihe function key number may be expressed as a variable.

EXAMPLE::

KEY O,"LIST c/r'" - this programs function key 0 to list
the current program when pressed.

KEY 1,"PRINT CHR$(A) c/r'" - this programs function key
1 to print CHR$(A) when
pressed.,

KEY 3,"BCOL5:TCOL15 c/r'" - this programs function key 3

to set backdrop and text
colours when pressed.

KEY 5,"B=58:PRINT CHR$(B) c¢/r" - this programs function
key 5 to set variable

B to 58 and then print
: 1 oA

KEY LIST ~ this will display the contents of all
the function keys, on the screen, as
shown 1in the example display given
below.

FO: LIST g/
F1: PRINT CHR$(A) c/r

-
F3: BCOLS: TOOLTS /P

F4:
F5: B = 58:PRINT CHR$(B) c/r
F6:
i

125

UL N EUNRE A unut ML OURORt MR COUROt 0 CRUUU PO MRt UL UUUEL D URURLL MU L0 LOUtt b mmmtecEum RN EEOEELL Y LBRNRL L EOERE LM RREnt 1 (EOE L ERRERL ORI Smmt S Seet ot et s {

LEFTS

sFO: LEFT$ (Left String)

sF1:

sF2: Byntax: LEFT$ (estring expressions»,J)

sF3:

sF4: Purpose: This 1is a String Function which returns the
sF5: left most J characters from the string expression,

sF6:

sF7: EXAMPLES:

Note that shifted functions are indicated by sFO to a) PRINT LEFT$ ("ABCDEF",3)

3 o i
The 3 left most characters of the string will

Related Keywords: appear on the screen (i.e. "ABC")

b) A$ = LEFT$("XYZLBJ",4)

This will return the 4 left most characters in AS$.
Thus A% will be "XYZL"

Related Keywords: LEN$ MID$ MUL$ RIGHT$ SCRN$

126 127

Tttt e TR T T L o T T T T TTE LTI T T T ——

LET NAME$="'JOHN"

C(4)=6

D$=IINDH

NAME$="FRED"

A%=P1

Therefore the value

(PI=3.14159)

Related Keywords:

Assigns the string "JOHN" to
the string variable NAME$

Assigns the value 6 to variable
C(4) which represents the fifth
element in the array C.

Assigns the string "NO" to the
string variable D$.

Assigns the string "FRED" to
the string variable NAME$.

This would give the same result
as A=INT(PI)

assigned to A% would be 3.

130

LIST

LIS
Syntax: LIST L1,L2,L3

L1 48 a 1line number from which the listing will
gcommence and defaults to O if omitted.

|2 is the number of lines to be listed at one time and
defaults to 15 until changed by a value in the command.

L3 is the last line number to be listed.
L1,L2,L3, can also be in the form of EXPRESSIONS.

Purpose: This is a System Command which lists the
current program to the current output device,

After L2 lines have been listed there is a pause. The
listing will <continue when the user presses the
space-bar or any key, and another L2 lines will be
listed. BASIC always remembers the last value used for
L2 and will continue to use that value until LIST is
used with a different L2 value.

Any or all of the expressions L1,L2,L3, may be omitted
but if L2 or L3 are specified, either individually or
together, then the appropriate 'commas' must Dbe

inserted.

Listings may be abandoned at any time, whether paused
or not, by use of the ESC key.

When a listing has paused, the cursor movement keys may
be used for editing purposes and this simultaneously
abandons the listing without the use of ESC. (This 1is
only applicable in SCREEN EDIT MODE).

131

T T I I T I T I I T T T T T P TE——

LIST may be wused as a normal statement within a
program. This is useful for displaying segments of a
Prngram listing during execution, and a delay could be
incorporated so as to hold the display on the screen
for a short period of time. REM statements containing
titles, and statements containing data, for example
could be programmed to appear for a short time on th;
screen at predetermined stages of execution,

EXAMPLES :

LIST 300,5,999 - This will 1list 5 1lines at a time

starting at line 300 and ending at

line 999,
LIST - Lists the whole program.
LASE.S - Lists the whole program, 5 lines

at a time.

LIST 100,7 - Lists 7 '1lines at a time, starting
from line 100

LIST 200 - Lists from line 200 using the last
used value for L2 for the number of
lines to be listed at one time

LIST 100,,199 - Lists from 100 to 199 using the
last used value for L2 for the
number of lines to be listed at one
time.

LIST,4,299 = Lists 4 lines at a time from the
start of the program to line 299,

TIe

L T T T I I T T T T Tl T TTTrE——

LIGT,, 1009 -~ Lists from the start of the program
to line 199 wusing the last used
value for L2 for the number of
lines to be listed at one time.

X=100:Y=50:LISTX,Y,X+99 - This will 1list from 100 to
199, 50 lines at a time.

Related Keywords: LISTP

133

LISTP (List tu.EFinter}

Syntax: LISTP L1,L2,L3

Purpose: This is a System Command which will list the
current program to the printer from line number L1 to
line number L3.

L

If L1, L2, and L3 are omitted the whole program will be
listed.

1t 1s the same as doing PRINT#1;LIST (see Page 183).
During the listing, L2 the 'number of lines at a time'

feature incorporated in the LIST command is ignored and
the list is printed continuously up to line L3.

After listing, the output reverts back to device 0 (the
monitor)

If the command is called from within a program, device
1 (the printer) will remain selected.

Related Keywords: LIST PRINT# PRINT

134

LN

LN (Logarithm - Natural)

Byntax: LN(N)
Purpose: This is a Function which returns the NATURAL

LOGARITHM of the numeric expression N (Natural logs are
to the base e).

It the value given by N is less than, or equal to, zero
a QTY ERROR occurs,

EXAMPLE :
PRINT LN(2)
The value 0.693147 will appear on the screen.

Related Keywords: EXP LOG

135

LOAD

LOAD
Syntax: LOAD =file>

(See file naming conventions Page 264)
Purpose: This is a System Command which 1loads

files/programs from the disc into the computor's
memory. If a file is not present on the target disc

then a NO FILE ERROR will be given.,

If the drive name is omitted from within the <files»
the current default drive will be assumed. The default
drive is initially set up as O but can be changed using
the DRIVE command (see Page 69).

If the file type is not declared within < file» then
XBS will be assumed,

LOADING BASIC PROGRAM FILES

When loading BASIC program files any existing BASIC
program in memory is deleted but variables are not
destroyed.

EXAMPLE : LOAD '"1:PROG. XBS"

This will load the BASIC program file whose name is
PROG from the disc in drive 1 (assuming, of course,
that drive 1 is fitted into EINSTEIN).

EXAMPLE: LOAD "PROG"
This will load the BASIC program file PROG.XBS from

the default drive O (unless changed by the DRIVE
command) into the computer's memory.

136

LOADING ASCII PROGRAM FILES

When loading ASCII program files, any existing program
i not deleted and variables are not destroyed. Thus
@éxtra routines may be added to existing programs and
the extra lines will appear at their correct positions
in relation to the existing ones (care being taken not
to duplicate 1line numbers otherwise the original will
be over written by the new line).

If a "new" program is to be loaded as an ASCII file
then the NEW command must be executed prior to loading

(see Page 155). In this mode the user may observe the
program file loading line by line on the screen.

EXAMPLE : LOAD "1 :TEST.ASC"

This will load the ASCII program file TEST.ASC from
drive 1 (regardless of current default drive) into
the computer's memory, the 1lines of the program
appearing on the screen as it is loading.

LOADING OBJECT PROGRAM FILES (MACHINE-CODE FILES)

When loading OBJECT files, an area in memory has to be
reserved prior to loading using the CLEAR command (see
Page 48).

Ihe start address will be assumed to be the first

location above the cleared area. (i.e. if CLEAR &9FFF
has been used then loading will commence from &A000).

Machine Code Subroutines can be loaded during execution
of ~a BASIC program using this facility and then
accessed by use of the CALL command as required. The
subroutine should terminate with a &C9 code in order to
return execution to the BASIC program at the 1line
immediately following that containing the CALL command.

137

I I I I I I I O I I L L L I L L L L L L 1 L T I U Dl s £ S s e e s BLER L b btk R

LOCK

If the size of a file is larger than the area of memory
available then a MEM FULL ERROR will be given.

LOCK

ﬁ ntax: L(x:l'(< f] >
EXAMPLE - LOAD "0: ROl |TINES.DE j1 y ile
I . | ||i 3 is a Di sSC CDI‘I"ImELr‘ld Wthh Inﬂks thE f‘i]e

given by <« file®» for the disc in the current default
drive. (see Page 264 for file name conventions).

This will 1load the machine-code routines, or data
from the file ROUTINES.OBJ, from the disc currently
in drive O, into the area of memory previously
reserved by a CLEAR command, i.e. &A0OQ0 in the

Files PROTECTED in this manner may not be re-written
example above.

over, erased, or renamed (i.e. cannot be corrupted).

fhey are identified in the directory display by an *

GENERAL NOTE: 1If a file is not present on a particular symbol before the file .

disc then a NO FILE ERROR will be given.

If the file does not exist a NO FILE error occurs.
Related Keywords: CLEAR DRIVE SAVE

Related Keywords: UNLOCK

138 139

T T

LOG

LOG (Logarithm)

MAG

MAG (Magnify)
Syntax: LOG (N) HByntax: MAG J

Purpose: This is a Function which returns the LOGARITHM
to the base 10, of the value given by N.

where J can have a value from 0 to 3, each number
representing a particular sprite magnification. All 32
sprites are affected equally.

#

If N is less than or equal to zero a QTY ERROR occurs.
Purpose: This is the Sprite Magnification command (see

EXAMPLE : SPRITE Page 216).
PRINT LOG (2) J MAGNIFICATION
The value .30103 will appear on the screen. 0 - defines an 8x8 pixels sprite.
Related Keywords: LN EXP 1 - defines a double sized 8x8 sprite
2 - defines a 16x16 pixels sprite
3 - defines a double sized 16x16 sprite

MAG O and 1 apply to a shape which has been defined on
a single 8x8 pixel grid. In MAG O the shape remains as
a single 8x8 pixel character as shown below.

I

] 8

140 141

PR R RO AR CGRERY) CORRRL 0 BEERFRRURO BB R URERN O REERYVOUER!00CRURR! 0 (OBUR!FRERR R RN OUREL OUUR)RUUR! | RUUR 4 CRRRR 1 FUR SR SR ERREY 1 EOERH OOBRI ORI

when "“"defining" the complete shape the data for each
fixB grid should be used with the SHAPE command in the
order shown above. In MAG 3 the shape on this 16x16

grid is doubled in size to occuply an area equivalent
to 32x32 pixels.

In MAG 1 the single 8x8 shape is doubled in size
(magnified) to occupy an area equivalent to a 16x16
pixel grid. Each original pixel is in fact made 4 times
larger, resulting in a grid of 8x8 larger pixels as
shown below.

i

EXAMPLE :

MAG 1

16

Following this command all 32 sprites would be
double sized 8x8 wuntil another MAG command was
introduced to change the selections,

Related Keywords: SHAPE SPRITE

16

MAG 2 and 3 apply to a shape which is built up from
four 8x8 pixel grid shapes to form a single shape on a
16x16 grid. In MAG 2 the four shapes are printed as a
single shape as a 16x16 pixel grid as shown below.

16

16

143
142

L s A SR SRR AR AR AR A A AR A R I IIIII-H_II_IIII_I IR iR N R IR F AR R R N VR RN N RO NEE NN EEEEI N NI EEEI I DN ERE NI IR GR T

MGE

MGE {EEFQEJ fhe execution of MGE brings back lines 60 to 100 and if
LIBT 18 wused after MGE the original 1listing will
Syntax: MGE reappear (i.e. lines 10 to 100).

Jee also the example mailing list in File Handling

Purpose: This is a System Command used to "merge"
(Page 264) which illustrates the use of MGE.

sections of a program which have been "held" or, -add a
second program to one already in memory., (see HOLD
Page 98). : Related Keywords: CHAIN HOLD RENUM
MGE takes no account of two or more lines having the

same number and therefore both lines would appear in
the final result.

EXAMPLE:

10 REM LINES KEPT IN VIEW
20 PRINT

30 PRINT "#&n

40 PRINT

50 PRINT "#"

60 REM LINES HIDDEN
70 PRINT "A"™

80 PRINT

90 PRINT "B"
100 PRINT

A ﬂDLD 10,50 will keep lines 10 to 50 of the program
while lines 60 to 100 are apparently lost. Thus a LIST
after this use of HOLD would give the following.

10 REM LINES KEPT IN VIEW

20 PRINT
30 PRINT 't
40 PRINT
50 PRINT "#

144 145

Rl i il L L L AR L IO L IR L IR LR S L IO L L L O L L L L LR £ RN L IR £ SO S L SRR L LR 4 R 0 SRR 0 A & f St § S 8 s £ s A s St

T - —

MIDS

MID$ (Middle of String)

Syntax: MID$ (<string expression», J1,J2)

Purpose: This 1is a Standard String Function which
returns a number of characters, given by the value of
J2, starting from the character position given by J1,

in respect of the string specified in the function.

J2 may be omitted, in which case the remainder of the

string, starting from the character position given by
J1, 1is returned.

EXAMPLES:
PRINT MID$(''HELLO",3,2)
The result will appear on the screen as "LL".
PRINT MID$("HELLO",3)

The result will appear on the screen as "LLO".

Related Keywords: LEFT$ RIGHT$

146

s e ———————t l 0] fT@R. GuROT O MEETOCCO TN _III_H_"-th““—I B0 THRRT 0 TRRRT - TR0 L R LT T T T T

L=
—D
=
}—=>
t—D>
¢
D

6=
(=

MOD

MOD (Modulus)
HByntax: I1 MOD 12

Purpose: This is an ARTHMETIC OPERATOR which forms an
expression equal to the integer value of the remainder
resulting when I1 is divided by IZ2.

EXAMPLE :
5 MOD 3 this returns a value of 2

Related Keywords:

147

MOS

MOS (Machine Operating System)

Syntax: MOS

Purpose: This is a System Command and is used to
transfer control to the "Machine Code Monitor" section
of the "Machine Operating System'",

The X and Y commands in MOS can be used for cold and
warm starts when re entering the BASIC (see MOS/DOS

manual).

Related Keywords: DOS

148

MULS

MILE (Multiple String)
Byntax: MUL$(<« string expression » ,J)

Purpose: This is a String Function which will cause a
string to be repeated the number of times, given by the
value of J (i.e. String Multiplication).

The resultant string must not exceed 255 characters.
EXAMPLE: PRINT MUL$("AB",10)
This will give the following display.
ABABABABABABABABABAB

It is a wuseful function for displaying repeated
patterns.

EXAMPLES:

i) PRINT MULS$("=*" _15)
This will give the following.

Sk khkkkkkkkkkkk
ii) PRINT MUL$("+=",6)

This will give the following.

Related Keywords: STR$

149

s e anaa s g et 4 AR S AR A s s e s 4 s s 2 e s e

MUSIC

7 fhe following can be included in a music string:-
Syntax: MUSIC S§1;52;53 1. R represents a 'rest'.
| : 2, X represents a 'beat', and turns on the noise
Purpose: This command can be used to create various generator of the PSG rather than a tone.
sounds and play tunes composed by the user, 4, Vn, where n is numeric data in the range 0 to 6

which selects a voice defined wusing the VOICE
commands.

String expressions 51,52 and S3 each represent musical
expressions. These expressions are each allocated to a
separate channel, the 3 channels are then played

simultaneousl 'he duration of a note (or rest) is specified by a
e o) number, in the range O to 9, immediately following the
MUSIC note (or rest), giving the note values as listed below.
e - 32nd note (demi-semi-quaver)
I I - 16th note (semi-guaver)
. | L]
o e St
$1 S 2 s3 '"

= "dotted" 8th note
Quarter note (crotchet)
= "dotted" quarter note

= Half note (minim)

= "dotted" half note

- Whole note (semi-breve)

It is not necessary to use all the three channels every
time and any expressions which are left "empty" will
cause a previous string expression specified for that
channel to be replayed.It is therfore good practice to
specify a rest (R) for channels not required to sound.
The MUSIC statement does not end until all three
channels have completed their appropriate measures.
This makes it important to ensure that all three

channels have the same execution time within a given
measure,

OO ~NONDWNSO
[

If the duration specification is missing off a note,
the duration defaults to the last specified duration on
that channel. On power up the duration 1is 5.

In a simple form each expression would contain a single
note.

The contents of the expressions S$1,52, and S3 indicate
the actual structure of the music to be played.
Individual notes are indicated by the letters CDEFGAB, | ’ |
these representing the chromatic scale.

(p $1 82 $3
L 1= ey
150 (“/H\ 151

wh T -..._...—u—n_n-lt_II_iI_II“ilhll_u

MUSIC

When written dinto the music command the

following
format would be given,

MUSIC "CR","ER","GR"

All three notes would be played simultaneously thereby
producing a chord. It 1s of course possible to play

one single channel by omitting the other two from the
command as shown below.

MJSIG HCEGR" d HHH . HH"

This would play the three single notes in turn,
channel A, one after the other,

order to silence the last note.

on
followed by a rest in

The simple format, shown above, can be extended such

that the contents of each channel may be represented in
any of the following formats.

a) a single String of notes.
b) a single String Variable (previously allocated to
a set of notes).
c) a combination of several String Variables or
Strings.
MUSIC
$1 $§2 $3
“AFBDC" AS B$+Cs$+DS$

152

E XAMPLE ;

10 A$ = "AFGCDE"
20 B$ = "EFCDG"
30 C$ = "CDEGBR"
40 MUSIC "GEBCD",A$,B$+C$

o increase the octave range each note can be preceded
by a symbol to produce the effect given in the 1list
which follows:-

+ — raises the note one octave above middle c.

' - paises the note two octaves above middle c.

— - lowers the note one octave below middle c.

— lowers the note two octaves below middle c.

_ lowers the note three octaves below middle c.

"Sharps'" and "flats'" are indicated as follows.

- precedes the note and indicates a “sharp".
b — precedes the note and indicates a “riat'.

EXAMPLE:

10 MUSIC "VO +#A7 =bES R","R","R"
Music is played on channel A as follows:-

VO - VOICE 0 is selected (VOICE O having been
defined in a voice statement).

+ — Raises the note one octave.
- Sharpens the note’

A - The note played

7 - Duration setting of a half note (minim)

NOTE: Spaces included in the string are ignored and can
be used to increase legibility.

The second note played is E flat played two octaves
down for a duration of a quarter note (crochet).

Related Keywords: BEEP PSG TEMP VOICE

154

e ——— Tl TFTETr " TETEET " TEORET " THNMI lJ'il_.l ifaiEEBrEiid e eniEEiEREnEi i it d it I IR B B i i i i T .

jooocoodoonooaaat

NE W
Syntax: NEW

Purpose: This is a System Command which deletes all
program lines and variables currently in the memory.

[t is used to delete any program currently in memory 1in

preparation for the input of another program and
different variables.
Used in "Direct Mode".
Related Keywords:
155

NEXT NOT

NEXT NOYT

Syntax: NEXT v1,V2,..,Vn Hyntax: «statement » NOT < statement »

vi,V2, etc. are the control variables used in the
associated FOR statements, and must be numeric.

Furpose: This is a LOGICAL OPERATOR wused in the
avaluation/comparision of statements,.

Purpose: This statement is used to indicate the end of
A FQR statement loop.

EXAMPLE :

IF NOT X THEN END
NEXT is always wused in conjunction with the FOR

statement to produce what is commonly referred to as a
FOR-NEXT LOOP.

This shows the use of NOT in an "IF" statement. In
other words IF the condition is NOT true THEN act

accordingly.

For a more detailed explanation of the combined use of

the FOR and NEXT statements see Page 88. Related Keywords: AND OR XOR

EXAMPLE:

10 CLS

20 FOR I=1 TO 10
30 PRINT I

40 NEXT I

50 END

Related Keywords: FOR STEP TO

156 157

joococuoooonaaqat

L s e TR Ry S TREET O TRERD 0 TR I_Ill_lll_llllﬁilILI e I AR R T s R R TR AR INNET T OIRNRT T OIRRNRT T T ORENREONT T OOTWNENRYCOC OCTEENYY T OTFERET T TEWNET T TETECT " OTTREERT

NULL

NULL
Syntax: NULL J

The value given by J is the number of nulls to be

printed and can be from O to 255. The default value is
0.

Purpose: This is a special command relating to output.
It sets the number of nulls to be printed after every
CARRIAGE RETURN (i.e. acts as a delay),

This command is designed to be used when operating slow
serial devices, where the CARRIAGE RETURN code may take
a little over the time allowed for one character to
print. (Thus causing errors),

The correct setting for a particular device will be
found by experimenting with various values but normally
1T would be sufficient for most devices.

NULL can be used as a function to return the current
setting.

EXAMPLE: NULL 5
PRINT NULL

This will display the value of the current setting
for NULL on the screen (i.e. 5 in this instance).

Related Keywords: SPEED

OFF

OFF
Byntax: OFF <=statement>
Purpose: This command is used to disable a particular

action or operation setting. Often used with ERR and
FOF commands. Refer to /Page 249 for further

information.
I XAMPLES:

OFF ERR - Disables the ON ERROR trap
OFF EOF - Disables the ON EOF (end-of-file) trap

Related Keywords: EOF ERR

199

ON

ON
Syntax: ON J GOTO L1,L2,..,Ln

J is an expression and L1,L2 etc are line numbers. If
J 1is negative then a QTY ERROR occurs.

Purpose: This alters the order in which BASIC executes

a program by jumping to one of a selection of 1lines
depending on the value of expression J.

The expression J is evaluated to give a number, If the
number is 1 then execution transfers to the 1st 1line
number after the GOTO. If the number is 2 +then

execution transfers to the 2nd line number after GOTO.
and so on.

FXAMPLE::

10 INPUT "TYPE IN A NUMBER FROM (1-5)":A
20 PRINT '"YOU HAVE SELECTED":
30 ON A GOTO 40, 60, 80, 100, 120
40 PRINT "GLASSES":
50 GOTO 130
60 PRINT "CUPS;
70 GOTO 130
80 PRINT "TANKARDS'";
90 GOTO 130
100 PRINT "DISHES";
110 GOTO 130
120 PRINT "MUGS":
130 END

When this program is RUN the following appears on the
screen to begin with.

TYPE IN A NUMBER FROM (1-5)

160

B e il B N " (G000 - - |10 I_IIH_IIII_IIII_"LIIII_HH—*:_“_HWHI i

ITeEInIIeonat

number is typed in then the appropriate line

s smelected from the ON-GOTO statement.

wWhen a
Rumbanr

NUMBER 1 selects line number 40
NUMBER 2 selects line number 60
NUMBER 3 selects line numner 80
NUMBER 4 selects line number 100
NUMBER 5 selects line number 120

Execution is then transferred to the selected line
and the appropriate action is taken; in this case a
message is output to the screen. Thus transfer of
execution has been controlled by the var%able A

Syntax: ON J GOSUB L1,L2,..Ln

Purpose: The same principle can be applied to accessing
subroutines using the GOSUB format.

Thus several subroutines can be accessed from a single
line of program depending on the evaluation oY 4

variable.

EXAMPLE:

10 REM PROCESSING TO EVALUATE A VARIABLE B

5O — = — < - R
70 = - — — = = = <

90 END

100 SUBROUTINE 1

M0 = = = = = = = = = =
120 = = = = = = = = = =
130 RETURN

161

140 SUBROUTINE 2

B 96 i e bl s
RO e B R e e
170 RETURN

180 SUBROUTINE 3

25 R e SRS A
e e o L S e
210 RETURN

Let us assume that there are three subroutines in the

program which will be accessed by the ON-GOTO statement
in line 60

The ?ariable B is evaluated by the processing involved
in lines 20 to 50 and will produce a number from (1-3).

The Subroutines are then accessed via the ON-GOSUB
statement, selection depending on the value of B.

If B ® i then . Jine 100 (subroutine 1) would be
accessed.

If B ‘=i 2 '%then' line 140 (subroutine 2) would be
accessed.

If B = 3 +then line 180 (subroutine 3) would be
accessed,

The lsubr--::-utines would RETURN to line 70 as normal to
continue program execution. (see Page 199),.

Syntax: ON ERR GOTO
ON ERR GOSUB
ON EOF

Purpose:

See ERR and EOF commands and Error Handling
section,

Related Keywords: EOF ERR GOSUB GOTO OFF

162

R
—s
—»
—»
t—»
==
=

OPEN

OFEN
Hyntax: OPEN <«file>»,SV,R

Purpose: This is a File-Handling Command which opens an
#xisting file, assigns internal file information and
buffer space to the file descriptor, and indicates the
record size to be used.

WV is a string variable name (but not a string array
@lement) and is the file descriptor.

R 1s the random record size (length) and is given as a
value in the range 0 to 65535, indicating the number of
characters involved, R is only specified for "random
access'; 1if "sequential access'" is to be applied then R
is omitted (in fact a random record 1length of 0
indicates that sequential access is to be performed).

If a file is not present on the specified drive then a
NO FILE ERROR will be given.

EXAMPLE::

OPEN "O:SILLY.DAT",FD$,15
This will perform the following:-

a) opens the file SILLY.DAT on the disc currently in
drive 0.

b) assigns FD$ as the file descriptor.

c) sets up for random access using
length records,

15-character

Related Keywords: APPEND CLOSE CREATE

163

L EERL - IR Ry B — e — - i —— PRI :
Shiibaatidtinaentitionanttionnntattnnnnretnnnnttennnt L Rnn R L IR L L R L D L L L LRt L It Ot L IRt L £ Rt £ AR s § 8 e S bt it b tin e

il
|

OR

OR

ORIGIN

(MIGIN

Syntax: <statement » OR <statement» Hynta ORIGIN
ynt X3 . X,y

Furgusei This %s a LOGICAL OPERATOR used in the
evaluation/comparison of statements (i.e

. Hoth x and y can have values in the range -32768 to
alternative), defines an

+12767 and are the co-ordinates of a point on the
aoerean.

EXAMPLE:
Purpose: This statement defines the origin of the
imaginary screen grid in respect of PLOT, UNPLOT, DRAW,
ELLIPSE, and POLY commands, x and y being the
co-ordinates of the new origin. On entry to BASIC the
default co-ordinates are 0,0 and this represents the
bot tom left hand corner of the screen.

10 IF (X AND Y)=3 OR Y=0 THEN 100

This will cause execution to transfer to line 100 if

Related Keywords: AND NOT XOR EXAMPLES:

a) ORIGIN 20, 24

This would establish the new position of the origin
on the screen grid and all subsequent PLOT, UNPLOT,
DRAW, ELLIPSE, and POLY commands would be executed
relative to the new origin.

b) PLOT 128,96
this plots a point at the cente of the screen,
assuming that the origin has not been redefined
since entry to BASIC.
whereas: -

ORIGIN 128,96:PLOT 128,96

this plots a point at the top right hand corner of
the screen,

Related Keywords: DRAW ELLIPSE PLOT POINT POLY UNPLOT

164 165

P g ||| aeppegeee——TTI 8! CRET 0 TTONET O TRUYET UM II_'IJII_IIII_II il AR Rl R R E T AR R R T T s TR R e e TN R T F r E T T T o o T R R e e e e

OUT

ouT

PEEK

FEEK
Syntax: OUT J1,J2
Byntax: PEEK (I)
Je is the value which is to be output, and J1 is the

"address" of the Z80 port. I must evaluate to a number in the range 0 to +65535

and can be given in decimal or hexadecimal.

Purpose: This command provides direct output to the

ports of the computer. Purpose: This is a Machine Code related command which

returns an integer in the range 0O to 255 which
represents the contents of the memory location given by

EXAMPLE :

The 8 bit user port is at I/0 address &32 so this
will be the value of J1 each time this command is
used to access the port.

EXAMPLE::

PRINT PEEK (&4100)

OuT &32,5
This will display the contents of memory location &

This sends the value 5 to the 8 bit user port (&32). 4100 as an 1integer.

Related Keywords: CALL DEEK DOKE POKE VDEEK VDOKE VPEEK

Further information relating to the functioning of the
VPOKE

8 bit user port will be found in the INTRODUCTORY
MANUAL .

Related Keywords: INP WAIT

(=19
s
y —

167

Pl

PI

Syntax: PI

Purpose: This is a Function which returns the value of
pi as 3.14159 for use in expressions.

It is much faster than using a variable to hold the
value of pi.

EXAMPLE:

PRINT PI
The value 3.14159 will appear on the screen.

Related Keywords:

168

PLOT

PLOY
Syntax: PLOT x,y

x and y are the co-ordinates of any point on the
secreen, x being horizontal and ranging from -32768 to
+d2767, y being vertical and ranging from -32768 to
+32767.

Purpose: This is a Command used to illuminate (turn on)
a single pixel point on the display screen.

he screen 1s divided upr into a GRID of 256 pixels
horizontal and 192 pixels vertical.

It the ORIGIN is defined as 0,0 then only pixels in the
range x = 0 to 255 and y = 0 to 191 can be illuminated
on the screen, However, all other values in the range

specified above are allowed, but will be off the
screen,

If the ORIGIN was defined -16383, -16383, then the
display area would effectively be x = -16383 to - 16128
and y = -16383 to -16191.
EXAMPLE:
PLOT 120,90
This will illuminate the pixel at 120,90 in the
current foreground graphics colour (as set by a
previous GCOL command), provided the ORIGIN is
defined as 0,0

Related Keywords: DRAW ELLIPSE ORIGIN POINT POLY UNPLOT

169

IIII_II_!II_H_Ilw—.

POINT

POINT
Syntax: POINT (x,y)

x and y are the co-ordinates of a graphics point on the
imaginary screen grid. Values for x and y can be 1in the
range -32768 to +32767.

Purpose: This 1is a function which returns a value
corresponding to the state of the pixel at x,y. 0 =
pixel off and 1 pixel illuminated.

EXAMPLE:

X = POINT (70,65)
PRINT X

This will display a value of O or 1 according to the
condition of the point whose co-ordinates are 70,65.
(i.e. whether 1lit or not).

Related Keywords: DRAW ELLIPSE ORIGIN PLOT POLY UNPLOT

170

= === =28 e I REEE IR R IR AR ARttt R i a R I IEEREIE I IEEERI L (RSN LEEERIL I (ESRI1Ei00RIL1ANANNELL ARSI IA00ELI1IANNNEES1AONENEAEIENANS AL SRNNEE S A

POKE

POKE

Ayntax: POKE I,J1,J2,..,Jn

Purpose: This is a Machine Code related command which
places the values of the expressions J1,J2 etc., 1into
memory, starting at the location given by I.

I XAMPLES:

POKE 16384 ,132

his will place 132 (i.e.&84) into location 16384
(i.e.&4000)

POKE &5100,&77,&34,&61

This will put &77 into location &5100, &34 into
location &5101, and &61 into location &5102.

Related Keywords: DEEK DOKE PEEK VDEEK VDOKE VPEEK
VPOKE

e

POLY

POLY (Polygon)
Syntax: POLY N,x,y,R,T,z

Purpose: This graphics command will draw a polygon
according to the values given in the parameters.

N 1is the number of sides of the polygon. x,y are the
co-ordinates of the centre of the polygon and can have
values in the range -32768 to +32767. R is the distance
from point (x,y) to the vertices of the polygon i.e. R
is the horizontal radius of an ellipse which would

contain the polygon and T is the ellipse qualifier
given by the following:-

VERTICAL AXIS (of ellipse)

2 HORIZONTAL AXIS (of ellipse)

If T is omitted it will default to 4/3 thereby having
the same effect as in the ELLIPSE command, resulting in

a REGULAR POLYGON (owing to the aspect ratio of the
screen being 4:3).

POLY N,x,y,R

z is a number in the range O to 5 indicating the type
of line to be drawn (if omitted z will default to 0).

0O - Continuous Line

1 = Continuous Unplot

2 - Dotted line 2 dots on, 2 dot off.

3 — Dashed line 4 dots on, 2 dots off.

4 - Dotted-Dashed line 10 dots on, 2 dots off, 2 dots
on, 2 dots off.

o

Dashed-dotted line 10 dots off, 2 dots on, 2 dots
off, 2 dots on, 10 dots off.

Related Keywords: DRAW ELLIPSE ORIGIN PLOT UNPLOT

172

ity

POP

Fro
Byntax: POP

Purpose: This statement is used in association with
gubroutines,

It mallows a nested subroutine to return to the
statement immediately following the GOSUB statement
preceding the GOSUB relating to the particular routine
which is being executed.

POP is only used from within a nested subroutine and

this is best explained by example:-
10 GOSUB 50

() - - - -
JU = = = -
40 END

50 REM.SUBROUTINE
T P

0w w0

80 GOSUB 120

) e

100 = = — —

!é%? RETURN
120 REM-NESTED SUBROUTINE

(30 = = INNER SUBROUTINE
A0 = p—— (NESTED)

160 — - TEST CONDITION CALLED BY LINE 80
1[HK}IF "TEST CONDITION" THEN POP

170 RETURN I

LINE 10 calls up a subroutine which starts at line 50.

QUTER SUBROUTINE
CALLED BY LINE 10

LINE 80 calls up a second subroutine from within the
existing subroutine (i.e. the nested subroutine), which
starts at line 120

173

L! SR EEEE et e m I ITTEEIIIIETEE I EERBEILEEEREL il I0eREi I IEEERI i INnRE IR R LRl L1 Rl L L IR L RN L1 iRt N D 1A RRL L LR RR i1 1011 LI 11N L1 1NNl 1L IERRRL 11NN IERRRl It iR iNEERIitIRnRnI i IEREnIiiINRRRI i IRRRRI I

This second subroutine would normally return to line 90 EXAMPLE i

and continue with the remainder of the original

subroutine. However, as a result of some kind of "test 10 PFRINT "NUMBERS"

condition" we might wish it to "return" to 1line 20 g .f:u "
(i.e. to the line following the original GOSUB call). oW 'HJNI LETTERS
Thus the processing contained within lines 90 and 100 ?“ —— :1D SEQUENCE"
of the original subroutine would be omitted. It is "“}FH[NT =D OF This shesme
this facility which POP provides. 00 END
EXAMPLE : |II 70 FOR I = 1 TO 5
Il B0 PRINT I ' FIRST SUBROUTINE CALLED
In the example given below, the result from execution oibdsonkiling BY LINE 20

of lines 230 and 240 will direct subsequent execution L4100 RETURN

to either invoke POP or transfer to line 250. : FIID S OR T P i

The resulting action from line 250 is indicated by the | 1?0 PRINT “ABCDE®

arrowed lines and will determine whether or not the # | 90 NEXTH1

symbol will be printed (as contained in the processing ' 140 GOSUEB <00 L SECOND SUBROUTINE CALLED

of lines 160, 170, and 180). (1150 PRINT "END OF SYMBOLS BY LINE 40

|I 160 FOR I : 1 TO 5

If the POP statement is executed, i.e. A is not 2, the 170 PRINT "#

RETURN statement will direct execution to 1line 50 I AL

rather than returning to line 150. [190 RETURN

f 200 FOR I = 1 TO 5 NESTED SUBROUTINES CALLED

210 PRINT s BY LINE 140
220 NEXT 1 4
*JG INPUT "IF NUMBERS TYPE 1 IF SYMBOLS TYPE 2" ;A
Hd() IF A<» 2 THEN POP

“ Los0 RETURN "

Related Keywords: GOSUB

175

174

e ptrrEEEE L iEEEEE 1 IGERRL I LIRARRI L IDRENI I INEER I VIR ERt (L IRl 1R IR Ri L1 1RaRI it iAANRI L IRRanI 1 AR L IRSRRE I IRERE] i i IREamt i i IREERE i UREREE I I IEEEt i f VR R IR A I 1§ ERR R I SR REl 82 LAt & ISREEE § 1 L

POS

POS (Position)

Syntax: POS (J)

JOOCEA De K. | i A each number associating a
particular function,

Purpose: This Function is used to obtain the current
output column or row position, depending on J as below.

POS (0) -

This gives the PRINT COLUMN count of the current

output device., It is independant of screen size and
is zeroed when a CARRIAGE RETURN, HOME or CLEAR
SCREEN/FORM FEED code is' output, or if the column

count exceeds 255. If output is not directed to any

other output device then POS(0) reflects the cursor
column position on the screen.

POS (1) -

This gives the current column position of the cursor
on the screen.

POS (2) -

This gives the current row position of the cursor on
the screen.

POS(1) and POS(2) are designed to be wused in
association with the PRINT @ facility.

EXAMPLE :
PRINT POS(0)

This will display the current value of the "column
count" of the current output device.

Related Keywords: PRINT PRINT@

176

PRINT

FRINT
Hyntax: PRINT E

Where £ can be a single expression or a 1list of
gapreasnions, which may be numeric or string type.

Purpose: This command 1is used to send data to the
gurrent output device (screen, printer, etc.).

PRINT may be abbreviated to ? when typed in as a line
of program text. When the program is listed this will
appear as PRINT, but will not affect the query (7?)
character where it appears elsewhere in program text.

A PRINT statement on its own will generate a carriage
return and line feed (i.e. leaves a 1line blank and
moves immediately to the beginning of the next 1line
down) .

[f several expressions are used they are separated by

one of a selection of SEPARATORS., These SEPARATORS
control the presentation of the final output.

A CRLF (carriage-return, line-feed) is generated at the
end of PRINT statements except when a comma (,) or

semi-colon (3;) separator appears earlier at the end of
a print statement,

NOTE: CRLF is still generated if the print output
axtends into the last (right-hand) column.

SEPARATORS :
GEMI-COLON

'his leaves the cursor where it is so that the next
expression will print from the end of the previous one.

ATT

N R REEE i iEEEEE L I EEEEE Ll R REL LS e LR i ERE R IR IR IR R IR IR R L IR R E IR R I LN E RN LRI Ihlll IRl inaaiiiinaamidiioaanidiiceani il VORIl IEEEI I I R O I IR B A R B B e

EXAMPLE : PRINT "JABBER" ;' WOGGY"

This will be output as follows:-
JABBERWOGGY

COMMA

This moves the cursor to the start of the next PRINT
ZONE. PRINT ZONES are simply specified positions in a
line of text and are situated at intervals of 10 spaces
(character positions), thus creating a series of ZONES.

10 SPACES
- -

ZONE 1 ZONE 2 ZOME 3 ZOME 4

EXAMPLE : PRINT "JABBER","WOGGY", '"WOGGY"

This will be output as follows:-

JABBER WOGGY WOGGY
Each line on the screen display contains 40 character

positions (in 40 column display) and therefore there
are 4 PRINT ZONES.

The ZONE LIMIT indicates the character position at
which the final ZONE starts in a line of text. When
the existing printing has gone beyond this point the
next expression will be printed at the beginning of the

next 1line (i.e, a carriage-return, line-feed is
generated).

178

1w e

W
LilE
L 17
L]
k2
Tl
] i
[—
c—D

fhe ZONE WIDTH and ZONE LIMIT, may be modified by use
af the ZONI command (see Page 247)«

The ® aymbol.

fhis allows printing of expressions to commence from a
specified point on the screen by use of co-ordinates.

[iee PI*INTE] .

PRINTING NUMBERS:

All numbers are printed with a leading and trailing
gEpace,
EXAMPLE : PRINT "TO YOU";987,71;321

This will give the following output:-

TO YOU 987 70327
'he leading space is reserved for the sign of the
number (+ or =) which is only shown when the number 1s

negative. Both spaces may be removed, 1if desired, Dby
use of the IOM command (see Page 117).

Numeric printout may be specially formatted by use of
the FMT command (see Page 84).

Related Keywords: FMT IOM PRINT @ PRINT# SPC TAB WIDTH
ZONE

179

T purpp——————— kT 0 (000 (RUU0 . TRRAC o GRURE o TRRML o TNEET G IMNE G TRIN L O rrE T I I I TN I T T Tt NI T T e T T T T eTTTT————TT T

PRINT@

PRINT@

Syntax: PRINT @ x,y,E

Where x and y are the co-ordinates of the first
character position to be used and E is the expression
to be output. x and y can have values in the range 0 to
290,

Purpose: This command allows print of expressions to
commence from a specified point on the screen by use of
the co-ordinates x and y. The co-ordinates must each
be separated by a comma and there must be either a
comma or semi-colon between the expression E and the
co-ordinates (in this instance the commas and
semi-colons are not executed as PRINT SEPARATORS).

The screen is divided into a grid of 40 columns across
by 24 rows down (in 40 column display).

- 4{] -

Each "box" of the grid represents a character position
and can be referenced by the number of the column (0 to
39) and the number of the row (0 to 23) in which it is
situated.

180

ENAMIPLE

CHARACTER SPACE 185,10

Ihis character position is defined as being at
go=-ordinates 15,10.

If either of the co-ordinates are greater than the
maximum number of columns or rows then a "wrap around"
will occur. Thus in PRINT @ 50,38 the cursor will move
to 10,14,

EXAMPLE : PRINT @ 20,15;"START POSITION"

'he cursor will move to the <character position
indicated by the co-ordinates 20,15 and the expression
will then be printed from that point as shown below.

FRINT®20,18

Related Keywords: FMT IOM PRINT PRINT# SPC TAB WIDTH
ZONE

181

s e S A S A S AR A SRR A S A A D 4 4

PRINT#

PRINT#
Syntax: PRINT# J

J 1s a '"device number " previously assigned to a device
and 1in the range 0 to 254, although only devices)
and 2 are defined in Tatung/Xtal BASIC 4.

Purpose: This statement assigns a new output device
(eg. Printer etc.) indicated by the value of J.

All output from statements such as PRINT and LIST will
be directed to the new device selected by N until
another PRINT# statement is encountered to change the
device selection, the program ends or the program is
aborted either by an error, or from the keyboard.

In DIRECT mode each 1line acts like a small program
therefore if PRINT# is used, the corresponding output
statement must appear in the same line. After execution
in direct mode the keyboard and display (input device 0
and output device 0) are automatically selected. The

following three devices are currently assigned within
Tatung/Xtal BASIC 4,

DEVICE DEVICE NUMBER
VDU (SCREEN) -~ 0
PRINTER - 1

SERIAL PORT - 2
(RS232)

The user may assign other devices as described on Page
113 of this manual.

When a program ends or aborts, either through an error

or as directed from the keyboard, the output device
reverts back to the display unit screen (i.e.device 0).

182

EXAMPLE @ PRINT # 1

All output following this statement 1in a program
will be directed to the Printer.

PIINT # can be used in the same manner as a normal
PRRINT statement but the '"device number" must be
followed by a semi-colon (;) so as to distinguish the
remainder of the statement.

EXAMPLE : PRINT#1; "ANSWER THE FOLLOWING QUESTIONS"

EXAMPLE: 10 PRINT#1
20 LIST

This will 1ist a whole program to the printer

device. When the listing of the program 1is complete
"ready" is printed on the display.

EXAMPLE : PRINT#2

All output following this statement 1in a program
will be directed to the serial port (RS232).

EXAMPLE : PRINT#1:LIST
When used in direct mode also lists to the printer.

When 1listing is complete an internal PRINT#0 is
performed, switching the output back to the screen,

183

PSG

USE WITH FILES: FBG (Frogrammable Sound EEneratnr‘*}

Syntax: PRINT #SV,I; string expressions dyntax: PSG R,J
Purpose: This is a File-Handling command which outputs
the string expressions to the file specified by the
file descriptor SV, from the start of record number I.

Purpose: This is a Sound Generator command which allows
direct access to the sound generator '"registers'.

i is the register number and has a value from O to 15.
For the application of this command refer to the

section on FILE-HANDLING, Page 264 of this manual. J is the register value in the range 0 to 255,

Related Keywords: LIST LISTP PRINT fhis command can be used to create particular "sound

effects" as described in a 1later section which is
devoted to the details of the Programmable Sound
Generator (Page 288).
L XAMPLE :

PSG 12,120

This will store 120 in register 12 of the sound
generator.

PSG can be used as a function to obtain the current
value of a specified register.

EXAMPLE :
X = PSG(8)

This will return the value of the channel A
amplitude register in X.

Related Keywords: MUSIC TEMPO VOICE

|
| 184 c—» 185

Lm IERREi i iASREl il IASERI il IZEEELIG iSRRI 1L IR 11BN LI DRIV ENRREI N INnEEI Il IR REl il Eanenin] I-IIII“III-II“IIII-IIIIHHIHHHn_ii_lI_ll-ﬂ_ﬂ-u_u-ll—u_n_n-

PSW

PSW (Password)

Syntax: PSW <password»>

Where password 1s an 8 character name enclosed in
quotes, selected by the wuser and may contain any
characters other than control characters.

Purpose: This command sets up the password protection
facility which can be used for security purposes to
limit the access to any given file to authorised
personnel only,

Once a password has been invoked any files saved can
then only be loaded back under the same password. Any

files which exist on the disc either without a
password, or wunder a different password, cannot be
loaded whilst the current password is in operation,

To change the password use PSW again with a different
password. To turn off the password (or make sure that
no password is in force!) use PSW by itself (i.e. PSW
and no password).

NOTES:

1. An unprotected file must (i.e., a file saved with
no password invoked) be read back without a
password being in force.

2. The password itself is not stored anywhere, on the
disc, therefore the user must know it or record it
elsewhere.

3. There is no indication given in the directory that

a file has been protected; the file can apparently
be read, but appears to be complete rubbish.

186

B2 s £ R 4 AN {4 LSRR R4S LRSS L (NN {RRE S A S IR IR L I L RRRR L IR O O 1 R R0 SRR L A S {4 A S SRt S S S S At St et Sttt e

4, IThe directory itself is unaffected by the password
a6 that it is perfectly acceptable to mix
unprotected files and files saved under various
passwords stored on the same drive (as long as you
know which are which!),

Fxample:

PEW" IXZ247Y5"
BAVE"MAIL . XBS"

Having saved the file MAIL.XBS under the password
IXZ347Y5 it can only be read or loaded back if that
password is in force. Likewise other files not saved

under this password cannot be read or loaded while it
& in force.

Helated Keywords:

187

PTR

PTR {Eninzgﬂi

Syntax: PTR J,I

J is a number in the range 0 to 24.

Purpose:
pad locations without using PEEK or POKE, but using the

number J to select the locations,

value. J is in the range 0 to 24.

Location numbers,
below.

0

1

W N

OO ~~NO0oUbh

b 5
12
13

hlI_Illl-IlH-IlI_III-III-II‘III-II_II-II_II-II-III-ll_Il-li_H“H_i“__i_u—___—_._n_.._.._

HTEXT

TEXT

SCMD
AUXCMD

ERRTAB
AUXERR
SADR

SFNADR

AUXADR
USRLOC

DEVPTR
DEFLST
BUFPTR
BUFLEN

program
Pointer

by HOLD)

Pointer
Pointer
table.

Pointer
Pointer
Pointer
Pointer
Pointer

Pointer

J,

Default or

to

to

This allows the user to set selected scratch

and I to be the new

are selected from the list given

'hard' pointer to start of BASIC

start of BASIC program (modified

standard reserved word table.
auxiliary (user) reserved word

normal error message table.
auxiliary error message table,
standard address table,
standard function table.
auxiliary address table.

user machine-code routine (CALL

as function).
Pointer to list of available I/0O devices.

No of lines to

'LIST' at a time,

Pointer to start of input buffer.
Length of input buffer.

188

}

184 IXTTOF Pointer to end of BASIC program.

18 VARTOF Pointer to end of simple variable space.

16 ARRTOP Pointer to end of array space.

17 BTRBOT Pointer to bottom of string space.

18 BTKBOT Pointer to bottom of stack area.

18 1viu Pointer to bottom of 'internal VDU' area.

20 LIMIT Pointer to top of RAM used by Tatung/Xtal
BASIC.

#1 TOPRAM Pointer to top byte of RAM available
to user.

¢ LNNO Current line number being executed.

21 DATLN Line number of current DATA state-
ment (undefined before a READ statement has
been done).

4 DATPTR Pointer to current position in DATA

statement (If using READ statements). Can be
moved to specified 1line by RESTORE L
statement

Any value for J outside the
give a RANGE ERROR,

range listed above will

fhe current value of any PTR location may be accessed
by using PTR as a function with the argument
representing the required location as follows.

EXAMPLES:
A= PTR (12)

This puts the start address of the current
buffer area into the variable A.

input

PRINT HEX$(PTR(12))

fhis will display the current address value for the
input buffer area (in hexadecimal format).

189

RAD

. HAD (Radiana)
NOTE: Caution should be adopted when using this command

as there are no facilites for checking that alterations
are not affecting other 1locations which might already
be 1in those areas of memory. For example, the CLEAR
command (Page 48) should be used to set up the LIMIT
and STKBOT locations, NOT PTR 20,E and PTR18,E.

Hyntax: RAD (N)

Purpose: This is a Function which converts the angle
given by N (in degrees) to radians.

Related Keywords: DEEK DOKE PEEK POKE BNVAFLED:

X = RAD (30) - Returns a value of .523599 radians

in X.

PRINT RAD(30) - This will display the value .523599
on the screen,

SIN(RAD(30)) - Returns the sine of 30° in X
(i.e. 0.5)

X

Related Keywords: ATN COS DEG SIN TAN

: e S

191
190

u'-h_l !
BB £ L RRREE f i RER Y E i RREE L ASRE G EREEEE LA RERE i NSRRI 0 URRREI 0 VERREI T VRESE I RERRIC I IARRRI 11 INOREI L1 CREARI L} il T LT T TT T TN T T T T T T YT T T T Y T —

READ

READ The Firet READ statement in line O will read a value of

0 far A, 6 for B, and 19 for C. The pointer is then
pagitioned at 19 in the DATA statement so that the
second READ statement, in line 40, will start from that
paint,

Syntax: READ V1,V2,..,Vn

Vi,V2,etc., are variables which are 1linked up to
corresponding values in the same order as listed in a
DATA statement (see Page 55). 30,6,19,20,64,71
Purpose: This statement is used to access data, stored Pointer
in DATA statements, from within a program as opposed to
input from the keyboard. BASIC positions a "pointer" at
the last item of data read so that subsequent READ

statements will continue from that point.

Thus the second READ statement will read a value of
2J, for D, 64 for £, ang #1 Tor F.

Helated Keywords: DATA RESTORE

If there is insufficient data available for the READ
statement a DATA ERROR will occur.

EXAMPLE :

10 READ A,B,C
20 - - - - -
30 = = = = - Processing lines,

20 DATA 9,20,30

This will READ a value of 9 for A, 20 for B, and 30
for C.

EXAMPLE :
10 READ A,B,C

A AR Y
30~ g

S 5 it i
B0 - wiw s

70 DATA 30,6,19,20,64,71 “

T R EEEEEEETIETIE——TT=—

REM

REM (Remark)

Syntax: REM

Purpose: This causes the remainder of the line to be
ignored by the Interpreter (i.e. it is not processed).

It is used for entering notes anywhere in a program to

clarify the purpose of particular sections and their
functions.

EXAMPLE :
10 REM PROGRAM TEST FOR COLOURS

This line is not processed and is merely a comment
line as an aid to the programmer.

NOTE: No further BASIC statements can be entered on the
same line after a REM statement.

eg. 100 REM PROGRAM ENDING:STOP

Here the stop will not be executed.

Related Keywords:

194

=4

REN

MEN (Hename)

Hyntax: REN <old file> TO <new files»

Purpose: This is a Disc Command which renames the file
given by =old file» to the name given by <new file» for
the disec in the current default drive. (note the order
of appearance in the statement and see Page 264 for

file name conventions).

if «new file» is already in use on the disc a FILE
EXISTS error will occur,

(f ®old file>» does not exist a NO FILE error will

OCCuUr.

(f wold file» is a locked file a FILE LOCKED error will

BU UM,

fhe default drive may be changed or re-selected by use
of the DRIVE command (see Page 69).

I XAMPLE :
REN "ROUTINES" TO "PROCESS"

lhis will change the name ROUTINES to PROCESS for
that particular BASIC file.

REN "PARTY.ASC" TO "GROUP.ASC"

This will rename the .ASC file PARTY to become

GROUP .ASC.

Related Keywords: DRIVE DIR

195

RENUM

RENUM (Renumber)

Syntax: RENUM L1,L2

L1 is the new starting line and L2 is the increment to

be used. If omitted, both L1 and L2 will default to
10.

Purpose: This is a System Command used to renumber a
whole program or a "held" part of a program.

All line number references following GOTO, GOSUB, RUN,
THEN, ELSE, AND RESTORE commands are modified

accordingly during the renumbering process.

EXAMPLES:

RENUM 1000,5 Will renumber, making the first 1line

1000 and then increment by 5
(1000,1005,1010,1015 etc).

RENUM Will renumber making the first line 10
and then increment by 10 (10,20,30,40
etc).

RENUM 500 Will make the first line 500, and then

increment by 10 (500,510,520,530 etc.).

RENUM , 20 Will make the first 1line 10 and then
increment by 20 (10,30,50,70,etc.).

Related Keywords: LIST

196

RESTORE

HESTORE
Hyntax: RESTORE L
Where L is given as a line number.

PFurpone: This statement positions (restores) the
internal pointer, wused by BASIC in DATA statements, to
the beginning of the first DATA statement following the
line number L, regardless of where the pointer had been
left by previous READ statements.

fhis facility allows DATA statements to be re-read
several times within the same program thus avoiding
having to store the 'data items" in variables
throughout the whole execution of a program.

| (line number) is optional and if omitted, the pointer
\s restored to the beginning of the very first DATA
statement in the program.

t XAMPLE :

10 READ A,B,C

20 = = i

Vo (T

40 DATA 10,20,40,70,90,110,15,17,150
50 READ X,Y,Z

8 . o 25

T0 « ~ =&

80 RESTORE 30

90 READ D,E,F

The sequence of operations would be as follows:-

197

klul-uu_lll_lllI_III.I_II_II_III-Il_ll-lll-ll-“_1“-"‘"_ M I L L I L L I I L I L I L I L L D S S A B i & S S e o e S

ii)

111}

iv)

V)

vi)

vii)

The READ statement in line 10 will give A a value
of 10, B a value of 20, and C a value of 40,

The internal pointer is then positioned at 40 in
the DATA statement.

10,20,40,?0,90,110,15,1?,150
Pointer

The READ statement in line 40 will continue from

the pointer and give X a value of 70, Y a value
of 90, and Z a value of 110.

The internal pointer is then repositoned to 110.

10,20,40,70,90 110,15,17,150

Pointer
The RESTORE statement in 1line 60 causes the

pointer to move to the beginning of the DATA
statement in line 30.

10,20,40,70,90,110,15,17,150

t

Pointer

The read statement in line 70 therefore gives D a
value of 10, E a value of 20, F a value of 40.

The pointer is then positioned once again at 40.
10,20,40,70,90,110,15,17,150.

Pointer

Related Keywords: READ DATA

198

RETURN

HETURN
Byntax: RETURN

The last line of any subroutine should always be
RETURN,

Purpose: This terminates a subroutine accessed by a
GOBUB statement. |

Frxecution is transferred back to the line immediately
following the original GOSUB statement,

It a RETURN 1s encountered without having been preceded
by a GOSUB then a RETURN ERROR will occur,

Related Keywords: GOSUB

199

RIGHTS . RND

RIGHT$ RND (Random)

- Syntax: RIGHT$ (€string expressions,J) Syntax: RND (I)

Purpose: This is a String Function which will return Purpose: This is a Function which returns a random

the rightmost number of characters, given by the value number.
of J, of the string specified in the function,
e, when I=1 (i.e. RND(1)) the function returns a random

number in the range O to 1, as a floating point number.

PRINT RIGHT$('"HELLO",2) When I is in the range 2 to 65535 the function returns

! . : an integer random number ranging from 0 to (I-1).
This will display the following result on the g gaing

screen:-— When I=0 (i.e.RND (0Q)) the functions returns the last

LO random number produced, whether integer or real.

EXAMPLE:
Related Keywords: LEN MID$ LEFTS$

RND (9) - returns a number in the range 0 to 8
RND (307) - returns a number in the range 0 to 306.

EXAMPLE :
PRINT RND(11)

The random number selected from the range 0 to 10
will be displayed on the screen.

Related Keywords:

200

201

RET

RUN

RUN

Syntax: RUN L

Where L is a line number

Purpose: RUN 1s used to begin the execution of a
program currently in memory, starting at the 1line

number given by L, and clearing all variables.

If L is omitted execution will begin from the lowest
line number of the program.

EXAMPLE :

RUN 45

This will cause a program to begin execution at 1line
45,

Syntax: RUN file

Purpose: In this alternative form RUN will load the
program file declared in file and then commence its
execution from the lowest line number.

EXAMPLE :

RUN "TESTPROG"

This will 1load the program whose name is TESTPROG.XBS
from disc and then execute it.

Related Keywords: CHAIN LOAD

202

SAVE

BAVI
SAVING BASIC PROGRAM FILES
Hyntax: SAVE <file>

(See FILE NAMING CONVENTIONS on Page 264)

Purpose: This Command saves files/programs, currently
in the computer's memory, onto disc.

If the drive is omitted from within the <« file » the
current ""default drive" will be assumed. The default

drive is initially set up as O but can be changed using
the DRIVE command (see Page 69).

[f the file type is not declared within <« file ® then
XBS will be assumed.

EXAMPLE: SAVE "1:PROG.XBS"
This will save the BASIC Program file currently 1in
memory onto the disc in drive 1, giving 1t the name
PROG. (assuming drive 1 is fitted to EINSTEIN).

EXAMPLE:: SAVE"PROG"

This will save the program onto the disc in the current
default drive, as a XBS type file.

SAVING ASCII PROGRAM FILES
Syntax: SAVE <file>»,L1,L2,L3

Purpose: In this form this command saves all or part of
the program memory as an ASCII file.

The L1,L2,L3 format is as for LIST (Page 132), L1 and
L3 being the start and end of the section required in

ASCII form. As with list L1,L2 and L3 may be omitted.

In this instance L2 has no effect.

The file type part of <« file » must be ASC,

EXAMPLE: SAVE"0 : PROG.ASC"
This will save the whole of the program currently in
memory onto the disc in drive 0, as an ASCII file
PROG.ASC.

EXAMPLE : SAVE"1:PROG.ASC",90,10,150.
This will save the section of the program currently
in memory from line 90 to line 150 onto the disc in
drive 1, as an ASCII file PROG.ASC.

SAVING OBJECT PROGRAM FILES (MACHINE-CODE FILES)

Syntax: SAVE <file>,I1,I2

Purpose: This command saves the area of memory from

address I1 to address I2 inclusive as an object file.

I2 must be greater than I1. Both I1 and I2 must be
declared. The file type within - «file® must be .OBJ.

EXAMPLE: SAVE"1:TEST.OBJ",&8A3D, &9000
This will save the area of memory from location
&BA3D to location &9000 onto the disc in drive 1 as
the object file TEST.OBJ.

Related Keywords: DRIVE LOAD

204

lil_m_u—n-ll_ll_ll-li-ll-ll-ll_ll-ﬂ-ll-ll_ll-

SCRN

HSCRN$ (Screen String)
Syntax: SCRN$(J)

J must be a value in the range O to 23 (i.e. number of
rows available on the screen).

Purpose: This is a String Function which will return
the full string of characters (40) from a row on the
screen, indicated by the value of J.

EXAMPLES:

X$ = SCRN$(11)

This will return the string of characters contained
in row. 11 of the display screen in X$.

PRINT SCRN$(11)

This will output the contents of screen row 11.

Related Keywords: LEFT$ MID$ RIGHTS$

205

SEP

SEP (Separator)

Syntax: SEP J

Where J is given as an ASCII value.

Purpose: This command is wused to re-define the
SEparatnr character used in DATA and INPUT statements,
J being the ASCII value of the required character.

Un@er normal operation the separator is a comma (,) but
this can be changed by use of the SEP command,

One common application is to use SEP 0. This is used
when only one item is required whichk' is to include
commas as part of the input data. It allows the user
Fn put any string of characters (including the comma)
into an INPUT or DATA statement as a single item,

On conclusion of the processing involving the redefined
separator character, normal operation can be restored

by use of the SEP 44 command (44 being the ASCII value
for the comma).

SEP can be used as a function to return the value of
the current separator.

NOTE:

1) Some characters will not work well as separators
wltb numeric data, the full stop (.) for example.
Obvious confusion could occur here with decimal
points.

2) Remember that SEP will affect DATA statements as
well as INPUT statments.

¢ =

“ EXAMPLES: SEP 43

fhis would change the separator to a + symbol as
given by the ASCII value 43,

PRINT SEP

This will output the ASCII value of the current

separator on the screen.
A = SEP

Thus A will contain the ASCII value of the current
separator character,

The following example illustrates another use of SEP.

10 SEP 47:REM '/' IS SEPARATOR
20 INPUT "TYPE IN THE DATE AS DD/MM/YY:"; .DAY,MNTH, YEAR

30 PRINT "DAY IS ",DAY,"MONTH IS ";MNTH;"YEAR IS ";
YEAR
40 END

This program will display the following.
TYPE IN THE DATE AS DD/MM/YY :
The date is then typed as - 14/12/84

As a result of the SEP command the slash symbols (/)
are accepted in place of the comma separators given in
the corresponding part of the INPUT statement. Program
execution then continues and displays the following.

12 YEAR IS 84

DAY IS 14 MONTH IS

Related Keywords: INPUT DATA

"SGN
SGN (Sign)

Syntax: SGN (N)

Where N can be given either as a number or a numeric
expression

Purpose: This is a Function which returns the sign of N

(i.e. indicates whether N is a positive or negative
number) .

The following values are

returned according to the
given conditions.

N less than 0 a value of -1 is returned.
N equal to 0 a value of 0 is returned
N greater than 0 a value of +1 is returned.

EXAMPLES:

PRINT SGN (-5.721) - a value of -1 appears on screen
(i.e. a negative number).

PRINT SGN (7.6219) - a value of 1 appears on screen
(i.e. a positive number).

PRINT SGN (0) - a value of 0 appears on screen

(i.e. a zero value),.

Related Keywords: ABS INT

208

ST I T I I I T I T I TIITTII I IhanIITTT T TIITMTT TITT nTT TTTT IIT TT T TT T e ETT e T T T .

SHAPE

SHAPE
fiyntax: SHAPE N,<string expression?®

N is the ASCII code nominated for a character.

«string expression®» is the required data and must
consist of 2 digit hexadecimal numbers contained within

quote marks ("").

purpose: This Command allows the user to define a
character shape or re-define an existing character.

SCII codes 32 to 127 and 161 to 255 are used for the

keyboard text and graphic characters. Unless there is a
need to redefine any of the characters avoid using the

codes in these ranges.

The following character codes do not have any shape
programmed at power-up.

0 to 31, 130 to 134, 142 to 154, 156 to 160

A shape consists of 8 bytes, each byte representiﬂg one
row of the character cell. The most significant bit of

each byte is the leftmost pixel of each row.

[f the shape programmed is to be displayed in 40 column
display, only the 6 most significant bits‘will be
displayed on the screen. wWhen in 32 column display or
when defining a SPRITE shape all 8 bits are displayed.

209

—r
€ Most Significant BITS of each BYTE

displayed In 40 column display

Two or more shapes can be defined from within a single
command by adding 8 bytes for each new shape. Each

block of eight bytes will be asigned to the next ASCII
character code in sequence.

EXAMPLE : The following "little man"

. . . shape is
defined within one character cell.

210

I T TR T T T e T e T T am

aoaaooonooonet

L

Viiddasiiitasssi il iaanmitl

fhe HEX values for each byte are placed into the shape
command (in order from the top downwards), and an

ASCII code is selected (eg. 130). The command would
then appear as follows:-

SHAPE 130, '"00 70 70 20 F8 20 50 88"

'he shape can be called onto the screen as follows:-

PRINT CHR$(130)

The shape can also be used with the SPRITE command
(Page 216.

[f ASCII code 160 is wused then the shape can be
accessed from the keyboard by pressing the GRAPH key
and the SPACE bar simultaneously.

EXAMPLE:

SHAPE 160,"00 70 70 20 F8 20 50 88 00 88 50 20 F8 20 70
70"

The first 8 bytes define character code 160
The second 8 bytes define character code 1671

Related Keywords: SPRITE MAG

211

SIN

SIN (Sine)

SIZE

Blzc
Syntax: SIN (N)

Syntax: SIZE

~ Where N is an an i ' i :
| angle given in radians. Purpose: This is a Function which returns the size of

memory available for the PROGRAM, VARIABLES, POINTERS,

Purpose: This is a Function which returns the SINE of and STRINGS, as a positive value in the range 0 to

N.
maximum size of the system.
EXAMPLES: NOTE: Also used to clear space prior to a HOLD and
MERGE.
[A = SIN (0.523599) - For an angle of 30°
EXAMPLE : X = SIZE

| This returns a value of 0.5 in A

This will return a value in X indicating the size of

The values are returned for use in expressions but can memory available.

be output by using the PRINT command.

Related Keywords:
PRINT SIN (1.0472) — For an angle of 60° y

The value 0.866027 will appear on the screen,

| Related Keywords: ATN COS DEG TAN

pogaoooooooqot

212 213

LIII!-IHI-II-IIII-III IR R T T T T R et TRt i I I-Illi

SPC

SPC (Space)

SPEED

SPEED
Syntax: SPC (J)

Syntax: SPEED J

Purpose: This is a Function which specifies a number of

spaces, as given by J, which are to be printed. J can be any integer value from O to 255.

Purpose: This is a special command relating to output.
[t sets a delay on character output, to the current
output device, according to the value of J.

This function is only valid within a PRINT statement.

EXAMPLE:

PRINT SPC(10) 0 gives the longest delay i.e. slowest speed. 255 is

the fastest speed. (BASIC defaults to 255)
This will cause 10 spaces to be printed.
SPEED can also be used as a function to return the
current set speed and the value given can be stored as

Related Keywords: PRINT TAB
; a variable.
EXAMPLES: SPEED 100

All output following this statement in a program
will be slower than normal (normal being 255).

PRINT SPEED

This will display the current value (as a number
from 0-255) of speed set, onto the screen,

200
SPEED

SPEED
A

Thus A will contain 200,

Related Keywords: NULL

deatooonoonnot

214
270

Eiu P N T T T e Rl T TPRYT T TR T A T TRNAT IR TIANAT R ORANORE R GCOTHAORLREEETINN |-||||-||-||||-||||ﬂlll_m_mw_—-—-_-_—u—

SPC

SPC (Space)

SPEED

SPEED
Syntax: SPC (J)

Syntax: SPEED J

Purpose: This is a Function which specifies a number of

spaces, as given by J, which are to be printed. J can be any integer value from O to 255.

Purpose: This is a special command relating to output.
[t sets a delay on character output, to the current
output device, according to the value of J.

This function is only valid within a PRINT statement.

EXAMPLE:

PRINT SPC(10) 0 gives the longest delay i.e. slowest speed. 255 is

the fastest speed. (BASIC defaults to 255)
This will cause 10 spaces to be printed.
SPEED can also be used as a function to return the
current set speed and the value given can be stored as

Related Keywords: PRINT TAB
; a variable.
EXAMPLES: SPEED 100

All output following this statement in a program
will be slower than normal (normal being 255).

PRINT SPEED

This will display the current value (as a number
from 0-255) of speed set, onto the screen,

200
SPEED

SPEED
A

Thus A will contain 200,

Related Keywords: NULL

deatooonoonnot

214
270

Eiu P N T T T e Rl T TPRYT T TR T A T TRNAT IR TIANAT R ORANORE R GCOTHAORLREEETINN |-||||-||-||||-||||ﬂlll_m_mw_—-—-_-_—u—

SPRITE

SPRITE
Syntax: SPRITE S,x,y,C,N

Purpose: This is a Graphics Command which sets up a
particular SPRITE.

S is the '"sprite number" and can be in the range 0 to
31. This allocates each sprite a priority (0 being the
highest priority), this determines which shape is
masked when two sprites have the same screen position,

x and y are the co-ordinates which position the top
left hand corner of the sprite on the screen. The
range of values for x and y is -32768 to +32767.

C is a value in the range 0 to 15 indicating the
foreground colour shown in the code table below (C is
optional and if omitted it will default to the last
previously specified value of foreground colour). The
background colour is always zero, 1i.e. transparent.

O Transparent 8 Medium Red

1 Black 9 Light Red

2 Medium Green 10 Dark Yellow
3 Light Green 11 Light Yellow
4 Dark Blue 12 Dark Green

9 Light Blue 13 Magenta

6 Dark Red 14 Grey

7 Cyan 15 White

N is the ASCII code number of a previously defined
shape which is to be used as a sprite.

Related Keywords: SHAPE MAG SPRITE OFF

216

SPRITE OFF

SPRITE OFF

Syntax: SPRITE OFF S

Where S is given as a sprite number in the range 0 to
31.

Purpose: This is a graphics Command which will "turn
of f" the sprite given by S (sprite number)

If S is omitted then all sprites will be "turned off".

Related Keywords: SPRITE SHAPE MAG

217

Bt iianesiiiiseasiilieenni il iSeEni il Ineanl il iceenit i RaEEl il IEE Rl e nl IR EnEERl I IEEERl F I EENEEl i1 IEEEEl I 1 IEERI I IRl A i IR0 2 L LORaaE & & A i A £ S i A A A A A AR o s o o s e s s s

SQR STEP

SQR (§ﬂuare Root)

STEP

Syntax: SQR (N) Syntax: FOR V = N1 TO N2 STEP N3

Purpose: This command is used in the FOR-TO statement
to specify a particular increment within the statement.
Refer to Page 88 for further information.

Purpose: This is a Function which returns the SQUARE
ROOT value of N for use in expressions,

If N is given as being less than 0 a QTY ERROR will

occur. EXAMPLE :

EXAMPLES: X = SQR (22) FOR I = 1,TO 10 STEP 2
This returns a value of 4.69042 in X Related Keywords: FOR TO NEXT

_PRINT SQR (25)

The result 5 will appear on the screen.

Related Keywords:

HOTTE I IT 0000t

248 219

T I I I I I I I I I I I I I I T T T R R R R R R R~

STOP

STOP
Syntax: STOP

Purpose: This 1is similar to END but is wused to
terminate programs at various points from which they
may be restarted again.

The message BREAK IN L is displayed, where L is the
line number at which execution has stopped.

Program execution can be restarted using the CONT
command, provided that no alterations have been made to
the program during the break (variables may, however,
have their values altered).

This command is useful when debugging BASIC programs as
it allows sections of the program to be executed and
intermediate results inspected.

Related Keywords: CONT END

220

STRS

BTR$ (String string)
Syntax: STR$ (N)

Where N can be given as a numeric variable or numeric
gxpression.

Purpose: This is a String Function which returns a
satring representation of the value given by N.

The format in which the number is given by this
function can be manipulated using the FMT command (see
Page 84) and also the IOM 5 command (see Page 117).
Leading spaces are maintained by this function but NOT
trailing spaces, in respect of the numerical format
output as a string.

EXAMPLE:

A$ = STR$ (1.234) -~ gives the string " 1.234" in
AS$

EXAMPLE:

PRINT STR$ (1.234)

The string " 1.234" will be displayed on the screen.
EXAMPLE :

FMT 2,3:A% = STR$ (37.7325)

This places the string " 37.733" into A$ as a result
of the combination of FMT and the STR$ function.

Thus A3 = "37.733";

Related Keywords: ASC LEFT$ LEN MID$
MUL$ RIGHT$ SCRN$ VAL

221

EET s TRORY . (| TREEY. [INERT T ioROOE:: (RERGG::iRMNETGG: G IENANGGERLARNEAGEGERENENREGGIOAMANEEGEOIRNRNRRGEGIGAMR I-IIII-II-‘IIII“‘I_HI_HIW

SWAP

SWAP

Syntax: SWAP V1,V2

V1 and V2 may be numeric or striig variables, or array
elements. They must be of a similar type in any one

statement otherwise a TYPE ERROR will occur.

Purpose: This statement '"swaps'" the contents of the
variables V1 and V2 with each other.

The command is very useful in "sorting algorithms"

EXAMPLE :

SWAP A,C - the contents of A become the contents
of C and vice-versa.

SWAP D$,E$ -~ the contents of D$ become the contents

of E$ and vice-versa.

SWAP A(I),B(I) - the array element of A(I) becomes the
array element of B(I) and vice-versa.

Related Keywords:

L00TI000000001

TAB

TAN
Hyntax: TAB (J1,J2)

Purpose: This Function is designed to be used within a
PRINT statement only.

Characters will be printed to the output device until
the cursor reaches the column given by the value of
J1.1f the print column is past or at the column given
by J1, no TAB will occur.

J2 represents the ASCII value of the character which
the function calls on to be printed. If J2 is omitted
EITHER the character specified in the last previous
AB function will be used ,OR, if no previous TAB
function has been specified, a space character will be
printed.

Any valid ASCII character code may be used with this
tfunction.

Uses include formatting headings etc. for output.

EXAMPLE: 10 PRINT "NAME";TAB (20,46); "TATUNG"

20 PRINT "ADDRESS";TAB(20); "BRIDGNORTH"
This will produce the following printout:-

NAME . . cevosndbnsens Ravs s LITLING
AmRESSII‘I‘IIIIII"IIIII'I-EHIWJORTH

Note that the second TAB function defaults to the
specified character of the previous TAB function
because J2 is omitted.

Related Keywords: PRINT SPC

TAN

TAN (Tangent)

VUL

TCOL {I_uxt Colour)

Syntax: TAN (N) Hyntax: TCOL N1,N2

Where N is an angle given in radians. Where N1 and N2 are given as numbers in the range O to
9.
Purpose: This 1is a Function which returns the TANGENT

value of N. Purpose: This is a Display Command which selects the

colour of the TEXT displayed on the screen according to

EXAMPLES: the values of N1 and NZ2.

X = TAN (1,0472) - For an angle of 60° N1 represents the Foreground colour {1.@% the

characters) and N2 the Background colour, for each
individual character cell. They can be any value from
0 to 15, each number representing a particular colour
as listed below.

This returns a value of 1.73206 in X

PRINT TAN (1.39626) - For an angle of 80°

The value 5.67117 will appear on the screen. If either N1 or N2 is omitted, it will default to the

previous TCOL parameters.,

Related Keywords: RAD SIN

0 Transparent 8 Medium Red

1 Black 9 Light red

2 Medium Green 10 Dark Yellow
3 Light Green 11 Light Yellow
4 Dark Blue 12 Dark Green

5 Light Blue 13 Magenta

6 Dark Red 14 Grey

7 Cyan 15 White

When BASIC is first loaded, N1 = 15 (White) and N2 = 4
(Dark Blue).

This command only directly affects individual character
cells as they are printed on the screen and does not
change the overall backdrop colour of the screen.

224 229

e TR SR T T T e

Sp—— R

|

EXAMPLE:

TCOL 9,12

Any TEXT produced following this command will appear as
Light Red (foreground) characters on a Dark Green
background (in respect of individual cells).

NOTE: When a background colour other than O
(transparent) is specified, a CLS will fill the display

area with the new background colour.

Related Keywords: BCOL GCOL

226

$
$

1EMPO
Syntax: TEMPO N
where N is given as a number in the range 0 to 7.

purpose: This command sets the tempo (speed) of the
music output according to the value given by N. {;f‘
TEMPO is not specified a value of 4, see table, 1s
assumed).

Each value of N represents a tempo as listed below:-

0 - 50 beats per minute
1 — 100 beats per minute
2 - 150 beats per minute
7 - 200 beats per minute
4 - 250 beats per minute
5 — 300 beats per minute
6 - 350 beats per minute
7 — 400 beats per minute

EXAMPLE: TEMPO 3

This will set a tempo of 200 beats per minute for
the music output.

Related Keywords: BEEP MUSIC PSG VOICE

227

IiﬂhlluuulluullulﬂlHHHIIHHIIIHIIl"HIIIIIII"“ll“"lll"lll“"l'l"“ll“"ll““jEEEE;EE;“Il““lIlnﬂIlHnlIII'II'IlIlIlIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIII

THEN

THEN

TIS

r1$ (Time String)

Syntax: IF €<condition® THEN <statement » fyntax: TI$="HHMMSS"

| Purpose: This is used in the IF statement to direct the

' Purpose: This command is used to set the real-time
resulting sequence of operation.

clock contained within the system to a particular value

i {ven by HH as hours, MM as minutes, and SS as seconds.
For further information see Page 102 0 Y ’ ’

On power up the clock is set to '00000" but once set by
the TI$ command it will continue to keep the time until
the machine is switched off or reset.

EXAMPLE:

IF x > 10 THEN 120

[he time may only be set to an even number of seconds,
although both odd and even numbered seconds are

displayed.

Related Keywords: IF ELSE GOTO GOSUB

rhe current time value can be returned using TI$ as a
function.

EXAMPLES: TI$ = "174032"

This will set the clock to a time of 17 hours, 40

minutes, 32 seconds, i.e. 40 minutes, and 32 seconds
past 5 o'clock in the afternoon.

PRINT TI$

This will display the current time setting in the
following format:-

HHMMSS

Related Keywords:

228 220

1
i.llil_illi-.llll-llll-llllnlII-IIII-I|-IIII-IIII-II_HII-II_IIII-IIII-II_I lRtsiitiseasi it inaani 111011 10NN IR IDEEEE 1 NNEEL 44 O S S A S A S AR h A A S S i s & S &

TO

TO
Syntax: FOR V=N1 TO N2

Purpose: This is used within the FOR statement in order
to specify the upper limit for a required loop.

Refer to Page 88 for further information.

EXAMPLE: FOR . x = 3 TO 19

Related Keywords: FOR NEXT STEP

230

-uiul-iut_uu-uu-mlﬂul_llll-lIII-IIII-IIII-I|_IIIIHIII-IIII-IIIIHIIILin_u_H

UNLOCK

UNLOCK
Syntax: UNLOCK =file>
(see Page 264 for file name conventions).

Purpose: This is a Disc Command which unlocks a
previously locked file (given by <file®) on the disc
in the current default drive.

Files unlocked using this command may then be written
to, erased, or renamed as required.

If the file does not exist a NO FILE error occurs.

The default drive may be changed or re-selected by use
of the DRIVE command (see Page 69).

Related Keywords: DRIVE DIR LOCK

231

VAL

UNPLOT

UNPLOT VAL (vValue)

Syntax: UNPLOT x,y gyntax: VAL (<string expression?)

Purpose: This is a String Function which returns the
numerical value of the specified string up to the first

non-numeric character.

Where x and y are the co-ordinates of a point on the
screen and can have values in the range of -32768 to

+32767(the screen grid is 256 pixels horizontal by 192
pixels vertical).

{H+H . mn_mn "] d H : and HE" are Fegarded as ﬂUmEFiC} 3

The "&" character is taken to indicate that a "he x
number " will follow.

pixel which is illuminated i.e. the pixel at the
co-ordinates specified is changed from foreground to

background. If the pixel is already in background,
then the pixel will remain unchanged.

Purpose: This is a Graphics Command which turns OFF a I I

EXAMPLES: VAL ("1.234ABC")

EXAMPLE : UNPLOT 120,90 This returns the value 1.234

This will turn off the pixel at co-ordinates 120,90. PRINT VAL ("1.7993XYZ")

Related Keywords: DRAW ELLIPSE PLOT POINT POLY The result will appear on the screen as 1.7993.

VAL (n&u & "AECD"}

This gives a value of 43981 (i.e. decimal equivalent
of &ABCD)

Related Keywords: ASC EVAL STR$

232 233

VDEEK

VDEEK (Video Deek)

Syntax: VDEEK (I)

Where I represents a memory location,

Purpose: This 1is a Machine Code related command which

operates in a similar manner to DEEK (see Page 56) with
the following differences.

1) The memory operations take place on the VIDEO
RAM.

2) The video memory location given in I must be in
the range 0 to 16383 (0 to &3FFF)

Related Keywords: DEEK DOKE PEEK POKE VDOKE VPEEK
| VPOKE

VDOKE

VDOKE (Video Doke)

Siyntax: VDOKE I,I1, 1I2,..,In
Purpose: This is a Machine Code related command which
operates in a similar manner to DOKE (see Page 65) with

the following differences.

1) The memory operations take place on the VIDEO
RAM.

?2) The memory location (I) must have values in the
range O to 16383 (0 to &3FFF).

Related Keywords: DEEK DOKE PEEK POKE VDEEK VPEEK VPOKE

235

e o e e e kN kN A N AR IREERE IR I IREEEI i GERERL iEiEEERI L i iEEEEI Il iREERIII

VERIFY

VERIFY
Syntax: VERIFY <file>

Purpose: This 1s a System Command which checks a file
on disc.

It is commonly used following execution of a SAVE

command in order to check that a program has been
transferred to disc correctly.

The command works in a similar manner to LOAD, except

that a program file is not loaded into memory, but is
compared with the memory contents.

Any error 1in the comparison is reported as BAD DATA

ERROR and a NO FILE ERROR indicates that a program file
1s non-existent.

EXAMPLE : VERIFY "1:HICK.XBS"

This will check the disc in drive 1 for the BASIC
program HICK and then verify the contents of the
file with the memory contents.

Related Keywords: DRIVE SAVE LOAD

236

.

/
MidtkiiiiidaaaiiiiaaanitiInsani il ISaRi 11 RSt il IRNaRI S INEEnLE i CRERi i i iaaami I IREEEi E 1 1SRRI 11 JA2aEi |t iGEEE(1| iaanai i iEE

VOICE

VOICE
Hyntax: VOICE N,N1,N2,N3,N4,N5

Purpose: This is a Sound Command which sets up a voice
for use by the MUSIC statement.

N is the "voice number" and can have values in the
range O to 7.

Fach voice then has give parameters as follows:

N1 is the '"noise period", in the range 0 to 31. 0
represents the highest frequency noise.

NZ is the "maximum amplitude" of notes, in the range O

to 15, where 0 1is the quietest and 15 the 1loudest
sound.

N3,N4 N5 allow construction of the sound envelope where

N3 represents the ‘'attack", N4 represents the
"sustain'", and N5 the '"decay'" times of each note played
In a given channel. These timings are independent of

the '"note length", so that it is possible to start a
new note before the last ‘one has completed, or to
complete a note before its time has expired, thus
allowing '"legato" and "staccato'" playing. The values
for all three timings fall within the range 0 to 255
where O represents the shortest time.

Up to eight voices may be defined in this way, which
can be invoked by means of the letter V within a MUSIC
statement. e.g. VO selects voice O.

Related Keywords: BEEP MUSIC PSG TEMPO

23F

VPEEK

VPEEK LEideu Peek)

Syntax: VPEEK (I)

Purpose: This is a Machine Code related command which
operates in a similar manner to PEEK (see Page 167)
with the following differences.

1) The memory operations take place on the Video
RAM.

2) The memory locations specified by I must be in
the range 0 to 16383 (0 to &3FFF)

Related Keywords: DEEK DOKE PEEK POKE VDEEK VDOKE
VPOKE

238

VPOKE

VPOKE (Video Poke)

fiyntax: VPOKE I,J1,J2,..,Jn

Purpose: This is a Machine Code related command which
operates in a similar manner to POKE (see Page 171)
with the following differences.

1) The memory operations take place on the video RAM

2) The memory locations specified by I must be in
the range O to 16383 (0 to &3FFF)

Related Keywords: DEEK DOKE PEEK POKE VDEEK VDOKE
VPEEK

239

Sammi 1§ BmmE i EERREE 11 BRERY 0| NSERIEH IRSRRI 10 (RBRRL 1 ARRERL0 1 RERRYYL(RRERY 00 (RRRR 1Y VERRRE L URURREL)LBRURL L) UURL0 0 RURR 0 UNUUNO 0 ARRORI0)(RRRRIL00RRRR I URURL URURREC LRURY N0 VOURRY RO BUUR O NRUL GRRRRLCLCRRHRL L ORUURI O BRI R L

WAIT

WAIT
Syntax: WAIT J1,J2,J3

J1 is a port number and J2 and J3 are data items
treated as 8 bit binary numbers.

Purpose: This command monitors directly the input and
output from a particular I1/0 port.

The command suspends execution of a program whilst it
monitors the port given by the value of J1 (eg. for 8
bit user port J1=&32). Execution will continue when a
required condition, controlled by the selection of the
data for J2 and J3, exists at the port.

The data which appears at the port is combined with the
two items of data given in J2 and J3 in the following
sequence.

1) The port data and J3 are combined wusing an
EXCLUSIVE OR operation which is performed
bit-by-bit on the two numbers.

J3 is optional and may be omitted. If J3 is not

used it is assumed to be 0. Any XOR comparison
with O simply produces a result identical to the
port data.

2) The result of the first operation is combined
with J2 using an AND operation, again on a
bit-by-bit basis. The result of this becomes the
FINAL RESULT.

3) The two steps above are repeated until the FINAL
RESULT is NON-ZERO. At this point program
execution will then continue.

240

fhe comparisons are made wusing the two tables given
helow,

"XOR" (Exclusive OR) TABLE

H1T SETTING
COMBINATIONS RESULT
N R g

0 0 0

0 1 1

1 0 1

4 0

"AND'" TABLE
BIT SETTING |
COMBINATIONS RESULT

A B _ e

0 0 0

0 1 0

1 0 0

1 1 1

a) These tables give all the possible combinations of
settings for two BITS.

b) Column A represents the setting (i.e. O or 1) of

one BIT, and column B the setting of the second
BIT.

¢) For each combination of setting a result is given
in column R

lhus if two BITS are set to 0 and 1 respectively, and
we are doing an "AND" comparison, that particular
combination is located in the "AND" table and the value
of the result given in column R 1is read.

241

ﬁln-m_m_ll_II-II-Ilm-ﬂ-ﬂ-iI_ﬂ-ﬂ-||.||I-||-|i (L UBBRRE 00 CORRRE 0| UROOR) OUEY L UURME 00 URUUNAL) UMOURY L WUR 1 INURRL 0 URRURE L URRRRE 00 (RREREL(6SR1 11 IRSRE1)1 (RRt i

EXAMPLE: WAIT &32,&FF,&0F

i)

ii)

iid)

iv)

Execution of the program is suspended whilst the
8 bit user port (&32) is monitored and the bit
setting first combined with the &0F data. Let us
assume that the BIT settings at the port are as
follows:-

00000111

This is now compared with the &0OF data (J3) in
accordance with the XOR table.

&0F data - 00001111
Port data - 00000111
Results from

XOR table - 00000000

The RESULT from the XOR compariscon is now

combined with the &FF data in accordance with the
AND table.

&FF data - 11111111
Result from XOR

comparison - 00000000
Final RESULT of AND

comparison - 00000000

Thus a FINAL RESULT of 0 is obtained.

Execution of the program remains suspended and
the sequence is repeated until the BIT settings
at the user port produced a '"NON-ZERO" FINAL
RESULT, at which point execution then continues.

In this example, for a "NON-ZERO" FINAL RESULT to

be obtained, one of the following conditions must
exist.

242

b
Tt L I I I I T e I I e an

EITHER - any of the 4 most significant BITS of
the user port must be "set" (i.e. 1)

OR - any of the 4 least significant BITS of the
user port must be "reset" (i.e. 0)

hus execution would be suspended until one of these
conditions exist. The following example 1illustrates

this.

EXAMPLE : WAIT &32,8&FF,&0F

i) 8 bit port set to 01101111 (i.e. 2 of the 4 most
significant bits are '"set").

ii) XOR comparison

&OF - 00001111
Port data - 01101111
Result -~ 01100000

iii) AND comparison

&FF = TR
Result of XOR - 01100000

Final result - 01100000

Thus a "NON-ZERO FINAL RESULT is obtained and
program execution will then continue,

EXAMPLE : WAIT &32,8&40

i) Let us assume a 00001010 setting at the 8 bit
user port.

243

ii) 'AND' comparison

&40 -~ 01000000
Port data - 00001010
Result -~ 00000000

iii) A ZERO result is given therefore the sequence
repeats until a NON-ZERO result is obtained.

EXAMPLE : WAIT &32,8&40
1) 8 bit port setting - 00001010

ii) 'AND' comparison

&40 — 01000000
Port data - 01001100
Result - 01000000

iii) A '"NON-ZERO" result is given and therefore
program execution will continue.

It can be seen that in this example execution is
suspended until BIT 6 of the port is set (1) (i.e. the
condition required to produce a NON-ZERO result)

Related Keywords: INP OUT

S

.l' 4
| k& R i B E Eonmame i i R DRk ALl e il iGGEElli iRl IR I IR R I N N I IR N I i f i il imeEEa i i e

WIDTH

WIDTH
Syntax: WIDTH J
Purpose: This is a special command relating to output.

[t sets the width of the current output device, so that

an automatic CARRIAGE RETURN/LINE FEED is generated as
soon as the column count reaches the value given in J.

'his 1is wuseful in certain printers such as Teletypes
and Teleprinters where overprinting might occur when
the print head reaches the end of a line.

Under normal operation the WIDTH is set to 0, when no
automatic CARRIAGE RETURN/LINE FEED is produced.

WIDTH can also be used as a function to return the
current width setting.

EXAMPLE: WIDTH 20

This would 1invoke a CARRIAGE RETURN/LINE FEED at
columnn 20 of the output.

EXAMPLE : PRINT WIDTH

This would display the value of the current width
setting on the screen,

Related Keywords: ZONE

245

XOR

XOR (Exclusive OR)

ZONE

JONE

Syntax: I XOR I Syntax: ZONE J1,J2

Purpose: This 1is a LOGICAL OPERATOR wused in the

J1 gives the value of the largest column number and 1s
evaluation/comparison of statements.

known as the ZONE LIMIT. J2 gives the value of the

ZONE width in number of columns.
EXAMPLE:

Purpose: This is a special command relating to the
format of output. It sets the ZONE width (see Page
178), and the largest column number for which printing
to the next zone will stay on the same line.

PRINT CHR$(&61 XOR &20)

This example shows on application of XOR which results

in the lower case 'a' character (ASCII &61) being

printed as upper case 'A', The logical process is
illustrated below:-

[-::1|1|1[n[210 - 61 = "ar

XOR

ofojjojojojofo] - 20
RESULT —|oj1]oJojojojo]d1] - 41, = "A"

Related Keywords: OR AND NOT

The command is used to change the settings of the TAB
functions contained in PRINT statements, according to
particular requirements of output,

[f omitted, J1 will default to 28 and J2 to 10,

7ONE can be used as a function to return the current
values of J1 and J2.

EXAMPLES:
ZONE 32,16

This sets a zone width of 16 columns with column 32
indicating the ZONE LIMIT.

PRINT ZONE (0) - this displays the current ZONE
LIMIT(J1)

PRINT ZONE (1) - this displays the current ZONE
WIDTH(J2)

Related Keywords: WIDTH

246 247

ilhllll—ul-lII_II-II_IIII_-III_II-.II_III_ll-Ill-llll_lll-ll_llll-llll_ll . i iliiiiciiticiaaaidiinanniiionaEililineeEiEl iR EEiEE iRl IEEEEl il IR IR R A el b A B B e &

11

ERROR HANDLING WITHIN BASIC

The facility is available to handle error routines from

within a BASIC program rather than abandoning of
execution. The errors are simply allowed to occur and
are then dealt with by subroutines.

The following commands/statements are involved:

ON ERR GOTO "Line No."
ON ERR GOSUB '"Line No."

Either of these two commands may be contained within a
program listing. If an error occurs AFTER one of these
commands then a GOTO/GOSUB is made to the particular
line number given where a routine may be stored which

deals with a particular error as programmed by the
UEEFI

MAIN STREAM

'h"HW"\ML

BRANCH TO|
ERROR ROUTINE

RETURN TO NEXT
STATEMENT

248

BRI b6 bR i AR EREEE IR EE I EEREE R IR G R I UREEE DI PEREET L ERREL N VRREEL L EEEEL LI INRRRIALIERARLI0N

[f ON ERROR GOSUB '"Line NO." is used the last statement
of an error handling routine should be a RETURN so as
to send execution back into the main program. The
oxecution re-enters the main program at the statement
immediately following the one which caused the error.

when either of the two commands are used, an internal
flag is set in order to activate the above procedure.

lhis flag reverts to '"normal" after the first error and
will therefore need setting again by another "ON ERR"
statement positioned either at the end of the error
routine, or soon after re-entering the main program.

OFF ERR

This command is used to restore the ON ERR flag to
"normal" from within a program. However when a program
"ends" normally, the flag reverts automatically. When

OFF ERR has been used, any subsequent errors will be
displayed as normal.

ERR, ERL , ERR$
These three statements are useful when included 1in the
error handling routines.

ERR - returns the c¢ode number of the last error
thereby indicating the nature of the error.

FRL — returns the line number at which the last error
occurred.
ERR$ - returns the error STRING, without the word

"ERROR", corresponding to the last error that
occurred. This is useful when one particular
error 1is expected and avoids having to flag
every possible kind of error.

249

i iaa iR L VIR VAR L IR A IR L IR R LN LR LR LR L R L IR LR RSN b L IR ERRE L IRRamE F 110

e

|

ON EOF GOTO "Line No."
ON EOF GOSUB '"Line No."
This is a similar operation to ON ERR but relates
specifically to routines which deal with encountering
an "end-of-file" when "reading".
The difference is that the ON EOF flag is not reset by

the iexecutiun of an ON EOF routine and therefore it
remains in force.

OFF EOF

This is wused to +turn off the ON EOF mode.
subsequent end-of-file encountered will then cause an
END OF TEXT ERROR to be displayed. Again when the

program "ends" in the normal wa the ON E i
automatically turned off. o i

Any

REMEMBER: -
ERRORS are only dealt with if they occur AFTER any of

the stateme?ts. The programmer learns from experience
where to situate the statements within a program in

order to be of any advantage to the program execution.

250

.ﬁ
0 I T T I TTTT T TTTT T Tt TTTT Ty e re— | B A A s e e e e

12

ERROR MESSAGES WITHIN BASIC

wWhen an error occurs, either in direct mode or from
within a program, execution halts and a message will be
autput, Unless ERROR trap statements are used (as
described in the previous section) the message will

appear in the following format:-

For direct mode -~ "Description of Error" Error
For deferred mode — "Description of Error" Error in

"Line No."

e "Description of Error" is a statement which
indicates the type of error which has been made. The
"l ine No." in deferred mode is the program line number

in which the error occurred.

I XAMPLES:
Direct Mode - Branch Error
Deferred Mode - Branch Error in 75

Details of the various error messages which might
be output are given below.

lad Data
A checksum error has been detected while loading

or verifying a program/data file from disc. 1i.e.
disc has been corrupted or memory contents do not

match file (in the case of verify).
ACTION:— Retry with backup disc!

Hranch

Reference has been made to a non-existent line
number i.e. an attempt to use a line which is not

included in a program.

ACTION: - Check program 1listing and make the
necessary corrections in relation to the
particular line/line number.

291

|

h.._:._nnnn—lg—lull—ul—ll_ll-n-m_il-lll-li-nI-III-II

Cmd (Command)
An attempt has been made to reference a reserved
word which does not exist. This often happens
when programs are adapted from other systems.

ACTION:~ Trace the offending word and convert or
re-structure to comply with current system.

Cont. (Continue)
An attempt has been made to continue a program,

(using the CONT command after a specified
interrupt) when either:-

a) an error occurred or
b) alterations have been made within the
program.

ACTION:- Check for errors which may have been
introducted in any modifications and rectify as

necessary.

Data
A READ statement has been used but insufficient
data has been presented in the corresponding DATA
statement.
ACTION:- Check the corresponding DATA statement
and rectify as necessary.

Dimension

An attempt has been made to redimension an array.
Arrays may only be dimensioned once within a
program, including those arrays of under 10

elements which have not been formally
dimensioned,
ACTION: - Check the appropriate statements,

processes, and corresponding logic sequences.
Rectify as necessary.

£9e

Biviaion
An attempt has been made to divide a number by

cOro.,.

ACTION: - Check the appropriate expression and
rectify as necessary.

Drive Select
A disc drive has been selected which 1i1s not

available on the system.

ACTION: -
i) Check the appropriate select statement and

rectify as necessary.
ii) Check that the particular drive is included

in the system.

Ind of Text
Either:-
a) An end-of-file marker has been encountered

in a data file or
b) The last block of a file has been read.

This error may be controlled within the system by
use of the ON EOF command. (see Page 249)

File
Either:-
a) An attempt has been made to open a file

which is already open or
b) An attempt has been made to read from, or
write to, a file which 1s not open.

ACTION:- Check the logical sequence of the operations
involved and rectify as necesaary.

203

Vidsadi il iR A I IRt L iR LI IR N RN LRl R L D iR (G RN N ERm I VI REERE §f AR i | IRRERE | § REES: i | {ad

File Type

A particular file type has been specified when in
fact another type was expected.

ACTION: - Check the appropriate file types and
rectify as necessary for them to correspond as
required.

Fn Defn (Function Definition)
Either:-

a) A user-defined function has been used
without first defining it or

b) CALL has been used as a function without
first setting up the USRLOC.

ACTION:-

i) Check definition of appropriate user defined
functions or

ii) Check that USRLOC has been correctly set up.
Rectify as necessary.

Mem Full

An attempt has been made to use a command which
would need more memory than is available.

ACTION: - Either re-structure or eliminate the

command so as to comply with current memory space
available.

Next

A NEXT has been used which does not correspond to
a FOR statement.

ACTION:- Check the loop structure and either:-

a) eliminate the NEXT or
b) insert the required FOR statement

2954

iLun—nu—n_n_n|-||—|u_ll_ll_lll-ll-llI-H‘III-IIII-II

Operand
Operand is missing after an operator.

EXAMPLE: PRINT 6.2%7+

ACTION: Check the expression and rectify as
necessary.

Ovfl (Overflow)
Numeric overflow from a calculation, 1.e. number
is outside the normal range for numeric
variables.

ACTION: - Check the appropriate expressions and
rectify as necessary.

Qty (Quantity)
A particular parameter in an array, command, or
function, falls outside the declared range.

ACTION: -
i) Check parameter values with the individual
commands and functions concerned to
determine the maximum and minimum values

allowed.
ii) Rectify values or re-structure as necessary.

Hange
An attempt has been made to access an element of

an array which does not fall within the limits of
the delcared dimensions.

ACTION:- Check the dimensions of the array and
rectify to accommodate the particular element as
required,

299

Return

A RETURN has been used without

a corr]
Bl esponding

ACTION: - Check the 1logical
processes involved and either:-

sequence of the

i) re-structure the sequence or
ii) insert a GOSUB. fyntax
depending on the particular requirements. |
’ Stack Full

| This will make reference to one or more of the
following situations:-—

a) FOR loops
i b) GOSUBs
” C) Parentheses in Expressions
[a). FILL

lype

The error message will be displayed if any of the

{ abnvg conditions have been NESTED too deeply
causing a ""stack overflow". :

| ACTION: - Re-structure so

nest%ng to an acceptable 1level and thereby
rectify the situation. 1In the case of FILL check
that the area in question is fully enclosed.

as to reduce the

Str Ovfl (String Overflow)

A gtring has been included which exceeds the
maximum number of characters allowed (255),

Disc
ACTION: -

? Check the offending string and either:-
1

re-structure the string, reducing the number
of characters or

transpose the single string into two or more

separate strings with less then £99
Characters per string.

ii)

256

ACTION: -

Htr Complex (String Complex)
A string expression has been used which is too

long or complex.

the expression into smaller

Break
sections.

a typing error has
been

This indicates that either
been made or a particular statement has
constructed incorrectly.

ACTIONS:~ Check the appropriate sections of data
and carry out the following:-

i) correct typing errors,
ii) correct statement construction errors.
An incorrect data type has been used. i.e. a

"numeric" quantity has been used when a '"string"
type was expected, or vice versa. :

Dir Full (Directory Full)

This indicates the directory section of a disc 1is
fulli

ACTION:- If further information is to be placed
in the directory then it must be at the expense
of some of the existing data (either by deletion
or overwriting).

Full

no more sSspace

This indicates that there 1is
available on a particular disc.

ACTION:- Further information can only be placed
on the disc at the expense of existing data
(either by deletion or overwriting).

257

illlE-IIII-IIII-H-IIHIII-II_II-II-III-!I-H-IIIIIIIIIIIHII . SARRRRL L RN LA ORRR AL IRRRRA A0 IRRRE 0 REEE L AN L L AN £ (RN 1 L AR 4 ARREEE £ IR £ § IRt § (AmmE { | LRaes £ (R84

_——

Disc Locked

An attempt has been made to write to a disc which

does not match the map of the disc held in the
computer memory.

EXAMPLE: This error usually occurs when a dis is

changed and an attempt is made to save a file on
this disc.

ACTION:- Execute a DRIVE n before using a SAVE

command, where n is the drive number containing
the new disc.

Disc Seek

An attempt has been made to access a particular
sector which is not on the disc. This quite
often happens with "random-access" files when the
record required is off the disc.

ACTION:- Check the appropriate data and rectify
as necessary.

File Exists

An attempt has been made to use a name for a file

which is already in existance (usually with the
REN statement).

ACTION: - Check file names and rectify as
necessary.

File Locked

An attempt has been made to erase, or write to, a
file which has been "locked".

ACTION:- Check that the correct file has been
referenced and rectify as necessary.

2958

SH TIPSR IR L s A S e ORI

No File

Shape

A particular file cannot be found in a directory.

ACTION: -
i) Check that the file name has been

constructed correctly and rectify as

HECESSE.P}’ ™
ii) Check documentation to determine whether or

not the file has been deleted previously.

Defn (Shape Definition)
The number of (hexadecimal) characters entered in

the shape definition string are not a multiple of
2 . Two characters must be entered for each row
of the shape being formed.

ACTION: - Edit SHAPE string by adding zero's or
removing any extra characters to give 2
characters for each row of the shape.

Key Defn (Programmable Function Key Definition)

Write

A function key string has been declared beyond
its legal length.

ACTION: - Redefine the key concerned with a
shorter string.

Protect
An attempt has been made to write to a disc which

is "write protected" (on a '"read only disc").

ACTION: - Check that the correct disc has been

used and rectify as necessary, or de-activate the
write protect tabs on the disc cassette.

259

individual error messages.

A summary of the list of error messages, indicating
| their allotted code numbers appears in appendix A,

260

13

CHAINING AND SEMI-CHAINING PROGRAMS

In addition to the normal use of the RUN and CHAIN
commands in direct or deferred mode, TATUNG/Xtal BASIC

4 provides the facility to SEMI-CHAIN programs.

Ihis allows several programs to access a '"common pool
of routines" without having to keep the same set of

routines within each sub-program.

lo do this the HOLD c¢ommand (Page 98) is used
immediately prior to executing a RUN or CHAIN. Both
RUN and CHAIN will restore a "held" program by
re-setting the TEXT pointer as soon as the program is
loaded. However, execution of the resulting program
will commence from the start of the added section NOT
from the beginning of the original program.

COMMON
ROUTINES
HOLD
SuUB
INITIAL SUB
ROUTINE ETC.
ROUTINES ROUTINE 2

1

261

!m_—!_m_lﬂ—I=!—!i!m'——!—I—ml——_!—l—_!—i:i:i_ LBl ARl A L AR A L A L L A REEE L1 IR R S L IEEE! 1 IR EEmi i I IEEEmE § § S EnmE § § e & & t

The diagram illustrates an original program consisting
of a common routines section and an initial routines
section. The initial routines would only be needed
once to set up arrays, variables, memory space as in
DIM and CLEAR statements, etc.

The HOLD/CHAIN combination separates the two sections
such that the other sub-programs illustrated can be
célled up in place of the INITIAL ROUTINES section each
time. (The flow of the original program would be
structured such that the initial routines are executed
before the 1line containing the HOLD/CHAIN commands is
encountered).

Thus:-

HOLD line number :CHAIN"SUB1" calls up the 1st
sub-program. |

HOLD line number :CHAIN"SUB2" calls up the 2nd
sub-program,

HOLD line number :CHAIN"SUB3" calls wup the 3rd
sub-program.

Each time execution would continue from the beginning
of the added sub-program which can then access the
COMMON ROUTINES section of the original program.

Thiﬁ methﬂd saves file space and greatly improves the
efficiency of a CHAIN, by speeding up the loading of
each program.

NOTE: The 1line numbers of the sub-program must be

selected so as to be greater th OMM
an those of th
ROUTINES section. e s

The example Mailing List program given in the section

on FILE HANDLING (Page 278) illustrates the use of this
method of SEMI-CHAINING programs.

262

""-ﬁl““_“-“-llnl-ﬂ-i“liwl_ﬂ-“-“_“ I I -iﬁllullull_ll_ll_u_Illl_llll_ln—ul IO LessayvaTeeRsR R Sy e

The

original program consists of the COMMON ROUTINES
section in lines 10 to 890 and the INITIAL ROUTINES

section in lines 1000 to 1110.

lhe HOLD/CHAIN combination is found in line 900 and the
flow of the original program is structured such that
the INITIAL ROUTINES (lines 1000 to 1110) are executed

hefore line 900 is encountered.

There are three sub-programs involved with titles
""msuB1', "MSUB2", and "MSUB3'". These sub-programs are
accessed according to the input in 1line 870 which
places a value in N$ (given by the user response to the

question "which?")

263

14

FILE HANDLING

FILE NAMING CONVENTIONS

The file naming conventions used in TATUNG/Xtal BASIC 4
requires the following 3 items to be specified when
naming a file:-

a) an optional, one character DRIVE NAME.
b) a FILE NAME of up to 8 characters in length.

c) a FILE TYPE of up to 3 characters in length, known
as the file extension.

Drive Name

The drive name, when used, is specified as a single
number from 0 to 3. If not given then the default
drive is assumed to be O. The default drive may be

changed at any time by use of the DRIVE command (Page
69).

File Name
This is the name assigned to a particular file by the
user. It may consist of any combination of ASCII

characters (i.e. from the character set), up to 8

characters in length, with the exception of the
following:-

a) the characters ,,"<€;:=7*%>

b) characters with ASCII codes greater than 127.
c) characters with ASCII codes less than 32

Example: SILLY

File Type

This may consist of any combination of ASCII characters

(i.e. from the character set), up to 3 characters in
length, with the following exceptions:-

264

@A) the characters .," »;:?%=«

bb) characters with ASCII codes greater than 127.
¢) characters with ASCII codes less than 32

. There are 4 file types recognised by TATUNG/Xtal BASIC

4 as follows:-

1) XBS - This is a BASIC source file (i.e. a normal
program file). If the "file type'" is not specified
then XBS is assumed.

2) ASC - This is an ASCII program file. These files
are uncompressed source files. (XBS files contain
"tokens" for reserved words whereas ASC flles
contain the words in full as they appear in a

LYIST TS
3) 0OBJ - This is an OBJECT file, or machine-code
subroutine/data. A special area can be set up

within the memory map (Page 314) for the storage
of machine-code routines by wuse of the CLEAR
command (Page 48). Anything stored in this area
can be SAVEd (page 203) as a .0OBJ file, and LOADed
into the area.

4) DATA FILES - Any other combination of characters
specified for "file type" will be treated as a
DATA FILE. Data files consist of a series of
ASCII characters divided into one or more records,
which can be serially accessed by a BASIC program
(in its broadest sense this catagory also
encompases the three special file types XBS, OBJ,
and ASC),

265

L EOREd fEORREE S ONNN Y L1 ORRRY AL (RNRY 1§ (SRRE11 1 (UERI 11 (UURR1 11 UUURE111 {RURRI1 1 IR00R11 0 IURERI 11 IRURRI1} (NNRE11 1 IRRRRII1 I' “ﬂl“ll“ll_III-IIIIHIIUIII-IIII-IIil_uIl_uu—lm—:m-m_uu—nl

The user may select combinations of characters for data
file extensions according to individual regirements.
The following are given as suggestions.

.BAK for backup copies
.DAT for data storage

.DOC for document files

EXAMPLES:

0:CATA.ASC - this refers to an ASCII file named
CATA. for a disc in drive 0.

1:SILK.XBS - this refers to a BASIC source file
named SILK, for a disc in drive 1

0:MEMO.0OBJ - this refers to an OBJECT file named
MEMO, for a disc in drive O.

1:SILLYDAT - this refers to a DATA file named

SILLYDAT, for a disc in drive 1.

NOTE: When working in BASIC, file names are contained
within quote marks (") as shown in the example below:-

"1:CATEL . XBS"

MATCHING FILE NAMES .

In some disc applications it is necessary to specify
more than one file, for example when specifying the
files for a DIRECTORY list. If one of the characters
in a file name is replaced by a ?, then it will match

any character in that position in the file name found.

EXAMPLE:

X?Z.ASC - Matches XYZ.ASC,XAZ.ASC,X9Z.ASC,etc.
?X.D?T - Matches AX.DAT,BX.D7T,4X.DZT,etc.

F -

if an * is inserted in place of a character then it
will match all the characters at and after that

particular position in the file name or file type in
which 1t appears.

EXAMPLE :

¥ . XBS - matches any XBS file.

- also matches any XBS file (XBS being the default)
¥.* - matches any file, and is the same as ?777?22%?.7172
PROG* ,ASC matches PROG1.ASC,PROG10.ASC,PROGABC.ASC,etc.

I ILE DESCRIPTOR (FDESC)
Ihis 1s a new concept in the approach to file handling.

Most BASICS have some method of assigning a storage
area for use by a file during the time it is open.
I'his area usually contains the following:-

a) a buffer

b) information describing the file

c) information relating to the location of
the file on disc.

'he problem that arises with this system is that the
area has to be fixed and set aside before running the
program, Thus this space may not be used for anything
ealane, even after the file is closed. There is also a

constraint upon the number of files which may be open
at one time.

267

L0 LR RN AR L RN L L AEREE L SRR S I IR U LR 3 SRt 1 AR § L et ramet £ 1 snmani L

TATUNG/Xtal BASIC 4 overcomes the problems outlined
above by adopting a different method as follows:-

A special "string variable" is assigned to a file
when it is opened for access. This variable is then
dropped when the file is closed.

The string variable is known as the FILE DESCRIPTOR
for the file (usually abbreviated to FDESC) .

The FILE DESCRIPTOR must be a simple string variable

(but not part of a string array) and always contains
the following:-

i) 168 characters (length of the descriptor)
ii) a 128 byte buffer

1ii) 40 bytes of special file information

The layout for a file descriptor string is shown below:

FDESC:
DRIVE 1 byte Disc drive name 01,02 etc.
FILNAM 8 bytes File name.
FILTYP 3 bytes File type.
INFO 21 Bytes Internal allocation information.
RECORD 2 bytes Record number, in the range 0 to

65535, + 1 overflow byte.

FILPIR - 1 :byte Pointer to current byte in buffer
for 1/0,

RWFLAG 1 byte Read/Write Flag 0=INPUT,1=0UTPUT.

RECLEN 2 Bytes Random Record Length (Random
access only).

FILBUF 128 bytes 128 byte file buffer,

NOTE: All parts of the descriptor string are accessible
by normal string functions eg. the buffer contents
could be inspected by doing a RIGHT$ of the last 128
bytes. (Page 200)

268

I TR TTTT T TTT TTT o TTT TTT Ty S S—

A FDESC may not be modified by LET statements etc. '
ihisn I8 attempted a FILE ERROR will occur the next time
il in used in a PRINT# OR INPUT# statement.

ACCESSING FILES

there are two commonly used methods for accessing files
and these are known as:-

a) SEQUENTIAL ACCESS.
b) RANDOM ACCESS.

Hequential Access
Hequential Access is most often used for the

manipulation of text or index files, where records may
be of variable length, and need to be scanned
(examined) sequentially i.e. one after the other,
starting from the beginning of the file until the
desired record location is found.

RECORD O | RECORD 1 |RECORD 2| RECORD 3 |evc]| &1A
START OF FILE END OF FILE

MARKER

Lach record should normally have a terminator, such as

A carrliage return code. There is a special code to mark
the end-of-file (EOF).

Lnder TATUNG/Xtal BASIC 4 an EOF code is supplied when
¢losing a sequential file, if the last operation was a
WRITE, and will normally detect the end-of-file marker
on a READ.

269

B R i s s s et e s PES £d IR

An end-of-file condition will occur if an attempt 1is

made to read beyond the last allocated sector of the
file.

Random Access

Records stored in random-access files are normally of a

fixed length, OR of a variable length but contained
within fixed-length blocks.

RECORD O | RECORD 1| RECORD 2 | RECORD 3 | RECORD 4 | erc.
START OF FILE END ::F FILE
(NO MARKER)

When a file is opened the "record length" is specified.

wWhenever a file input or output is required a '"record
number" is specified.

This means that there can be free movement about the

file in a completely RANDOM fashion, accessing only
those records required,

Having accessed a particular record it is also possible
to then read or write sequentially to the file from

that point onwards (even though a random record length
has been specified).

It is also possible, if required, to write a file with

one record length, and then read or write to the same
file with a different record length.

An EOF marker is NOT supplied when closing a
random-access file. However, the end-of-file condition

will occur when an attempt is made to read a sector of
the disc that does not exist.

270

lmfortunately this will not always be the case with a
fon-existent record since the disc space may have
already been created for it as a side effect of writing
another record which wuses the same physical disc
gsector, In that case it will be read as an empty

‘FraCcOrd,

F1LE~HANDLING COMMANDS
Ihe commands which provide the facilities within

file-handling are listed below:-
DRIVE OPEN CREATE
CLOSE APPEND PRINT#
INPUT# INCH# INCH#(N)
DRIVE

Syntax: DRIVE N
Where N is a single number from 0 to 3.

Purpose: This command 1s used to set up the default
disc drive for any subsequent file-handling commands.

EXAMPLE :

DRIVE A1 -~ Selects disc drive 1
OPEN "DATA.TXT",F$ - Opens the file DATA.TXT on drive 1

|t the drive specified is not available on the user's
system a DRIVE SELECT ERROR will be given.

NOTE: Some software may refer to drive O as A and drive
' a8 B, 2 as G S as In such cases use the
appropriate drive number.

271

- i - _
hni-:1uﬂll_u-n_ll_ll_ll_ll-il-ll_llulll-lll-ll_il T T T I ET————s

OPEN
Syntax: OPEN <file> SV, R
<file» must be a legal file name as described earlier.

SV 1s a string variable name (but not a string array
element) and is the file descriptor.

R is the random record size (length) and is given as a
value in the range 0 to 65535, indicating the number of
characters involved. R is only specified for random
access, 1t 1is omitted for sequential access (random
record length 0 indicates that sequential access is to
be performed).

Purpose: This command is used to open an existing file

and assigns internal file information and buffer space
tg the file descriptor, It also indicates the record
size to be used.

L]

EXAMPLE: OPEN "O:SILLY.DAT",FD$15
This will perform the following:-

a) opens the file SILLY.DAT on the disc currently in
drive 0.

b) assigns FD$ as the file descriptor.

c) sets up for random access using 15-character
length records.

NOTE: If a file is not present on the specified drive
then a NO FILE ERROR will be given,

2

ﬁhﬂllﬁliI-llull-Ill-ll_IIl_u_u_n-n_m-m-m—u—u

CREATE

fHyntax: CREATE <file>,SV,R
Purpose: This command is used to set up a new file.

Ihe operation of this command is exactly the same as
OPIN except that any existing file with the same name
an specified in the command is first deleted, and a new

empty file is opened.
{ XAMPLE: CREATE "0:SILLY.DAT",FD$,15

I'his will perform the following:-

a) creates and opens the file SILLY.DAT on the disc
currently in drive 0 (if any file of the same
name already exists on the disc it will be
deleted prior to the new empty file being

created).
b) Assigns FD$ as the file descriptor.
c) sets up for random access using a 15-character

length record size.
CLOSE

Syntax: CLOSE SV1,S8V2,..,SVn

Gv1,SV2,etc. must be string variable names (but not
string array elements) and are the file descriptor .

Purpose: This command performs the following:-

n) writes the remaining contents of the appropriate

buffers to their files.

b) stores directory information.
¢) closes the files given by the file descriptors in

SV1 to Syn.

273

A buffer will only be written out if the last operation
performed on it was a WRITE. The file descriptors are

then set to null strings which makes the space
available for use by variables or other files.

If any of the file descriptors specified is not active
(or is an ordinary string) then a FILE ERROR will be
given., (File descriptors are internally marked so BASIC
can distinguish them from normal strings).

If no file descriptors are specified then all files

currently open will be closed. (No error is given if

there are no files open).

NOTE: In addition to the above processing, CLOSE
induces an automatic PRINT#0:INPUT#O. This will cause
all output and input to go through the screen and

keyboard and the CLOSE command can be used at any time
when these two statements are required (it is shorter).

APPEND

Syntax: APPEND <file>,S5V

Purpose: This command is wused to write extra
information at the end of a sequential file, when to
OPEN the file and read to the end would be most

inefficient.

The operation is similar to OPEN with the following
differences:-

a) no record length is supplied.
b) the internal file pointer moves to the end of the
file not the start of the file.

EXAMPLE: APPEND "O:SILLY.DAT",FD$

274

!

Ihis will perform the following:-

a) opens the file SILLY.DAT on the disc currently in
drive 0, and moves the pointer to the end of the
file so data may be added.

[

h) assigns FD$ as the file descriptor.

NOTE: If the file specified by file does not exist on
the disc then a NO FILE ERROR will be given.

PRINT#
fiyntax: PRINT# SV,R;E

Purpose: This command is used to output the expression
list given . byERES to the file given by the
f1le-descriptor SV, from the start of the record number
given by R in the file.

rhe location relative to the start of the file is
calculated as R multiplied by the record length given
when the file was opened. (This only applies to random
access and is not allowed in sequential access). For
"gequential access'", omit the (,R) but keep the (j)
giving the following format.

PRINT# SV;E

Output will then start from the current place in that
file since the BASIC keeps account of its place in a
particular file even when several files at once may be
aopen for output. (In fact the only purpose of
specifying the record number R is to define the point
within the file at which input or output is to begin,
therefore it will be assumed that it '"'starts from where
Lt left off" if no record number is given).

210

With disc files opened for sequential access, the
internal file pointer can be set to the start of the
file by specifiying a record number (any number will
do, since it will be multiplied by the ZERO record
length). Mtk

The expression list given by E is as for a normal PRINT
statement and the data output will be EXACTLY as for
that. Hence a carriage-return-line-feed is output at

the end of the statement unless terminated by the
semi-colon.

All subsequent statements supplying output, following
this command, will now go to a file wuntil another
PRINT# or CLOSE statement is encountered.

PRINT#SV,E (no semi-colon) and PRINT#SV can be used to

set up the specified file for output. All subsequent
normal output statements will then direct data to the
file (eg. PRINT,LIST etc.)

If PRINT statements are then terminated with a
semi-colon 24 there will be no

carriage-return-line-feeds, and a stream of data may be
output to a file.

The automatic tab expansion (where CHR$(9) is expanded

to spaces) may need suspending by use of the IOM7,0
command (see Page 117.)

This now facilitates the output of strings which
contain machine-code.

276

SR ieaat 10 (RIS ROREE L ANRERE L0 CRNRA L ERRR 4 iENEE UL CBURR L RRERE I EOERE {1 (ARNRE 11 RN L1 100ant 10 InaeRl L

command (Page 111),

INPUTH
Hyntax: PRINT#SV,R;V

Purpose: This command takes input from the file given

by the file-descriptor SV, . ' |
character of the record number given by R 1in the file,

starting at the first

[he variable list given by V is as for the normal INPUT
and items are assigned to the

variable names given in the same way.

(f R is omitted the file will be read from the 1‘331:
point reached, or from the beginning if it has just
been opened (same application as in PRINT#). The format

of the command is then

INPUT#SV;

Following this command all subsequent statemeqts
relating to input will attempt to access the file
specified by SV (i.e. INPUT, INCH, INCH$, INCH$(N))
until another INPUT# OR CLOSE is encountered.

As before, the E can be omitted giving the following
Fﬂl“mat[E] .

INPUT#SV,R
or

INPUT#SV

Both these versions will set up the file specified by
sv for input, and all subsequent normal INPUT
<tatements will access that particular file.

277

el e = T

INCH$ AND INCHS$(N)

Syntax: INCH$
INCH$(N)

Purpose: This command is used when files containing

control characters are required to be input (eg.
machine-code files).

Normal INPUT statements ignore most control characters

and wusually terminate on a carriage-return or null
character whereas INCH$ does not.

INCH$(N) is even more effective since it creates a

string of length N and is wusually much faster than
INCH$ on its own.

An EOF condition on INCH$ (N) causes truncation of the
string to the length reached at the time when the EOF
occurred. Therefore all information will still be
passed into an expression before the "EOF error" is
actually flagged. The next input from that file will
then flag the EOF condition in the usual way (i.e. END
OF TEXT ERROR or ON ERR/ON EOF routine).

FILE HANDLING EXAMPLE

The following examples are given to illustrate the
facilities outlined in this section.

a) A text file display program.

This program allows the display of data or ASC
files on the screen, It performs virtually the
same function as the TYPE command in CP/M, and it
works at approximately the same speed.

278

b)

10 REM TEXT FILE DISPLAY PROGRAM

20 N=128: REM No. of characters read at a time.
30 INPUT "File to display?'"; NAMES$

1% IF NAME$="" THEN DIR: GOTO30

40 ON EOF GOTO80

50 OPEN NAME$,FD$

60 INPUT# FD$

70 PRINT INCH$(N);: GOTO 70

80 CLOSE FD$

90 END

Try replacing line 70 with the following, noting
how much slower 1t 1is:

70 PRINT INCH$;: GOTO 70 or try smaller values of
N in line 20.

A simple Mailing List (Sequential Access).

The program below is a simple mailing 1list
program showing as it does the use of sequential
access for reading and writing files. In this
case, the data file is read into a large string
array M$ at the start of the program, and
rewritten to the file SMAIL.DAT at the end.

This means that access to particular customers 1is
very quick, but at the expense of keeping the
entire file in memory at once. Moreover, the
maximum number of customers that the system can
handle is limited by memory size, and the size of
M$ as dimensioned in line 9000,

The information under each customer consists of
his/her name, telephone no. and address, the
address being stored in to lines, or fields. The
array CUST$ holds these items temporarily when
being accessed by one of the program options.

279

'y 1 R | e B R B B 0 = o F B I 5 5 e Sul U TR A USRS U U ————————————

CA10 PRINT Y$: IF Y$=""N" THEN RETURN
420 CLS: PRINT@4,10;"Writing New Data file..."
410 CREATE FILE$,FD$

The options supported by the program are to add a
customer to the list, to access a customer from

E the 1list for modification, and to list all

customers to the screen or printer. A40 PRINT# FD$; NCUST
ABO IF NCUST=0 THEN 490
5 DRIVEO A60 FOR I=0 TO NCUST-1
10 REM *%*%* SIMPLE MAILING LIST PROGRAM (SEQUENTIAL A70 FOR J=0 TO 3: PRINT M$(I,J)
| ACCESS) *** ABO NEXT J,I
20 REM 400 CLOSE
30 GOTO 9000 400 RETURN
98 REM /08 REM
00 REM ***COMMON ROUTINES*** 700 REM ***MENU DISPLAY®*%
198 REM HOO CLS: PRINT@8,0;"SIMPLE MAIL LIST PROGRAM"
199 REM *%%*OPEN DATA FILE#*=% 110 PRINT@4,3;"Options:"

120 PRINT@4,5;"0. Exit Program"

30 PRINT@4,7:;"1, Enter Customers"

140 PRINT@4,9;"2. Modify Customers"

150 PRINT @4,11;"3.List Customers"

170 PRINT@4,13;'"Which? '";: N$=INCH$(1): PRINT

80 N=VAL(N$): IF N<O OR N»3 THEN PRINT BEL$: GOTO 870

400 IF N=O THEN GOSUB 400: CLS:PRINT@8,0;"GOODBYE!";
BEL$: END

598 REM

00 REM ***SELECT OPTIONS***

000 ON N GOTO 1000,2000, 3000

200 PRINT:PRINT "Do you have a file to load
(Y/N)?"; : Y$=INCHS
210 PRINT Y$: IF Y$="N" THEN RETURN
220 CLS: PRINT@4,10:"Reading in data file..."
230 OPEN FILES$,FD$
240 INPUT# FD$; NCUST: REM Get No. of customers on
file.
250 IF NCUST=0 THEN 290
i 260 FOR I=0 TO NCUST-1
il | 270 FOR J=0 TO 3: INPUT M$(I,J)
11 280 NEXT J,I

e

290 CLOSE 010 STOP: REM SHOULD NEVER GET HERE!

] 205 RETURN 008 REM

, 208 REM 09 REM ***END OF COMMON ROUT INES***
200 REM ***HEADING DISPLAY**%* 1000 REM ***MSUB1 —— Enter Cus tome rg¥***

1010 HEAD$="ENTER CUSTOMERS"
1020 GOSUB 300

300 CLS: PRINT@8,0;HEAD$
310 PRINT@3,2;'"Number of customers on file: ";NCUST:

PRINT 1030 PRINT"Any more customers to add (Y/N)?"; : Y$=INCHS:
320 RETURN PRINT Y$: PRINT
398 REM 1040 IF Y$e»'Y" THEN 800

1050 FOR I=0 TO 3
{060 PRINT PRMPTS$(I);: INPUT CUSTS(I)
1070 NEXT

399 REM ***WRITE NEW DATA FILE***

} 400 PRINT: PRINT "Do you wish to save the file
| (Y/N)?";: Y$=INCHS$

280 281

1080

1090
1999
2000
2010
2030
2040

2050
2060
2070
2080
2090
2100
2110
2120

2130
2140

2150
2160

2170
2180
2190
2999
3000
3010
3020
3030

3040
3050
3060

FOR I=0 TO 3: M$(NCUST,I)=CUSTS(T): :
e b : $(I):NEXT:NCUST=

GOTO 1020
REM
REM ***MSUB2 —- Modify Customers#¥*

HEAD$="MODIFY CUSTOMERS"
GOSUB 300
INPUT "Customer No.?(If mod's finished press F)
«+ ";CN$: IF CN$="F" THEN 800
CN=VAL(CN$): IF CN=0 OR CN>»NCUST
- = THEN
CN=CN-1 e
FOR I=0 TO 3: CUST$(I)=M$(CN,I): NEXT
PRINT@3,8;"Customer No. 1 CN+1
FOR I=0 TO 3
PRINT I+1;FRMFT$[I],CUST${I}
NEXT: PRINT
PRINT "Any changes for this item
(Y/N)?"; : Y$=INCHS$: PRINT Y
IF Y$e>"Y" THEN 2180
PRINT "Which 1line (2-4)2"::¥$=INC
ot - HS : :
ol $ $: PRINT Y$:
I=VAL(Y$)-1
IF I=0 OR I»4 THEN 2030 ELSE PRI
NT PRMPT .8
INPUT CUST$(I): CLS 0
GOTO 2080
FOR I=0 TO 3: M$(CN I)=CusT$(1)
: = s NEXT
GOTO 2030 ’
REM
REM #***MSUB3 —- List Customers#***
HEAD$="LIST CUSTOMERS"
GOSUB 300: IF NCUST=0 THEN 800

PRINT "To Screen or Printer (S/p)7".:.: PF$=INCH$:

PRINT PF$:PRINT

IF PF$="P" THEN PRINT#1

FOR CN=0 TO NCUST-1

PRINT "Customer No. : ", CN+1

282

| 1“1*”l”im-"mm“!_“_II-Ill_II_III_IIII

--ig

] I -
M|

70 FOR I=0 TO 3: PRINT PRMPTS$(I),M$(CN,I):
PRINT

IOB0 IF PF$<>»'P" THEN INPUT "PRESS ENTER to go on:";Y$:

PRINT
1000 NEXT CN
1100 PRINT# 0: GOTO 800

AOOB REM
HOO9 REM *¥% INITIALISATION *%*

WO00 SEP 44: REM Use separator for DATA below

0010 BEL$=CHR$(7) :REM Beep
WO20 CMAX=100: REM Max. No. of customers allowed

0030 DIM M$(CMAX-1,3),PRMPT$(3),CUSTSH(3)
0040 FOR I=0 TO 3: READ PRMPT$(I): NEXT
0050 FILE$="SMAIL.DAT'": REM file name

0060 SEP 0: REM Allow commas in input text
0070 ZONE 28,20: REM Set up zone width
0080 GOSUB 200: REM Read in data file

0090 GOTO 800: REM Go and do your stuffl

W098 REM
0099 REM *** DATA FOR FIELD PROMPTS*%*%

0100 DATA "Customer Name:","Telephone No,:"
0110 DATA "Addr. Line 1" ,"Addr. Line 2 :"

c) A simple Mailing List (Random Access)

The program suite below is given to 1llustrate
and the

It does the same job as

the single program at example b), but with much
less memory, and shows how the random-access

method improves the file-handling capability,.

both the wuse of random-access files
'semi—CHAIN' facility.

The 1limit on the number of customers

dictated only by the free disc space available,
and the array M$ of example b., is dispensed

with.

283

NEXT !

The suite consists of four programs, the common
and setting-up routines, and the three
sub-programs which deal with the three options
currently supported (see example b, above).

A record length of 75 characters is used, this
limits the amount of information that may be held
on each customer, checks being needed to ensure
that the total lengths of the fields entered (NB,
including CR and LF codes!) do not exceed this
length, Such checking may be found at lines
1090-1100 in MSUB1, and 1170-1180 in MSUB2 below.

This kind of check is not necessary with a
sequential file,

The first precord contains the total number of
records on file (NCUST), and provides a useful

way of preventing access above the . limit
available,

Finally, note the use of the ON ERR routine at
100, which makes special checks for CHAINing to a
non-existent Sub-praogram, and allows the user to
create a new data file if one is not present.

10 REM **SIMPLE MAILING LIST PROGRAM (RANDOM ACCESS)##%

20 REM

*%% COMMON ROUTINES s

30 ON ERR GOTO 100
40 GOTO 1000

98 REM

99 REM #**%* ERROR ROUTINE %%

100

110

120
130

IF ERL=900 THEN PRINT "CANNOT INVOKE DESIRED
OPTION'";BEL$: GOTO 800

IF ERR<>25 THEN PRINT ERR$;" Error in line iz ERL.
END
PRINT '"No data file -~ Create (Y/N)?";: Y$=INCH$

IF Y$="Y" THEN CREATE FILE$,FD$: PRINT# FD$;"0":
CLOSE

| A0
198
1 L)
200

£ 10

el
g 9
£ Wy
100
110

120
[UR
94
HOO
10
Bal)
H 30
M40
HOO
M0
HE0
MY
3%
Huy
S0
U310
WO
B1R]e)

GOTO 800

REM

REM *=%% OPEN DATA FILE #*%%

OPEN FILE$,FD$,RL |

[NPUT# FD$,0;NCUST: INPUT# O: REM Get No. of
customers on file

RETURN

REM

REM #*w» HEADING DISPLAY #*%3%

CLS: PRINT@8,0;HEADS$

PRINT@3,2;"Number of customers on file: '";NCUST:
PRINT

RETURN

REM

REM %% MENU DISPLAY %%

CLOSE: CLS: PRINT@8,0;"SIMPLE MAIL LIST PROGRAM"
PRINT@4,3;"Options:"

PRINT@4,5;"0. Exit Program"

PRINT@4,7;"1. Enter Customers"

PRINT@4,09;"2. Modify Customers"

PRINT@4,11;"3. List Customers"
PRINT@4,13;"Which? ";: N$=INCH$: PRINT N$
N=VAL(N$): IF N<0O OR N>»3 THEN PRINT BEL$: GOTO 870
1F N=0 THEN CLS: PRINT@8,0;'GOODBYE!';BEL$: END
REM

REM #*%%* CHAIN TO OTHER SUB-PROGRAMS *#%

HOLD 1000: CHAIN "MSUB'+N$

STOP: REM SHOULD NEVER GET HERE!

REM

REM =**% END OF COMMON ROUTINES #**#*

1000 REM *% INITIALISATION #*=*

1010 SEP 44: REM Use separator for DATA below

1020 BEL$=CHR$(7) :REM Beep

1030 DIM CUST$(3),PRMPTS$(3)

1040 FOR I=0 TO 3: READ PRMPT$(I): NEXT

1050 FILE$="RMAIL.DAT": RL=75: REM File name & record

BRlize

e GEP 0: REM Allow commas in input text

285

=1
=1
o

1070
1080
1098
1099
1100
1110

1000
1010
1020
1030
1040

1050
1060
1070
1080
1090
1100

1110
1120
1130

1140

1000
1010
1020
1030
1040

1050
1060
1070
1080

ZONE 28,20: REM Set up zone width
GOTO 800:

REM

REM #%*¥* DATA FOR FIELD PROMPTS #*+%#*

DATA "Customer Name:","Telephone No.:"
DATA "Addr. Line 1 t " . "Addr, ‘Line 2 sn

REM *%% MSUB1 —- Enter Customers w*#%

HEAD$="ENTER CUSTOMERS"

GOSUB 200

GOSUB 300

PRINT"Any more customers to add (Y/N)?";:Y$=INCHS$:

PRINT Y$: PRINT

IF Y$<>"Y" THEN 800

FOR I=0 TO 3

PRINT PRMPT$(I);: INPUT CUSTS$(I)

NEXT

L=0: FOR I=0 TO 3: L=L+LEN(CUSTS(I))+2: NEXT

IF L®RL THEN PRINT "RECORD TOO LONG";:BEL$: GOTO
1030

PRINT# FD$,NCUST+1

FOR I=0 TO 3: PRINT CUST$(I): NEXT: NCUST=NCUST+1

PRINT# FD$,0; NCUST: PRINT# O: REM Update No. of
customers

GOTO 1030

REM *%%* MSUB2 -- Modify Customers **#

HEAD$=""MODIFY CUSTOMERS"

GOSUB 200

GOSUB 300

INPUT "Customer No.?(If mod's finished press F)
";CN$: IF CN$="F" THEN 800

CN=VAL(CN$): IF CN=0 OR CN NCUST THEN 1040

INPUT# FD$,CN

FOR I=0 TO 3: INPUT CUST$(I): NEXT: INPUT# 0O

PRINT@3,8;'"Customer No. :',CN

286

L T

080 FOR 1=0 TO 3

{100 PRINT I+1;PRMPTS$(I),CUSTSH(I)

1390 NEXT: PRINT

1120 PRINT "Any changes for this item (/N M e Y=
INCH®: PRINT ¥Y$

4130 IF Y$ex»“Y'" THEN 1170
1140 PRINT "which Line (2-=4)7";: Y$=INCHS: PRINT Y$:
FPRINT
1150 I=VAL(Y$)-1: PRINT PRMPTS(I);: INPUT CUST$(I): CLS
1160 GOTO 1080

{170 L=0: FOR I=0 TO 3: L=L+LEN(CUST$(I))+2:NEXT

1180 IF L»RL THEN PRINT "RECORD TOO LONG'";BEL$:GOTO
1080

1100 PRINT# FD$,CN: FOR I=0 TO 3: PRINT CUST$(I): NEXT:
PRINT# O

| 200 GOTO 1030

1000 REM *%% MSUB3 -- List Customers %=

1010 HEAD$="LIST CUSTOMERS"

1020 GOSUB 200

1040 GOSUB 300

10%0 PRINT "To Screen or Printer (S/P)?7";:
PRINT PF$: PRINT

1060 IF PF$="P" THEN PRINT#1

1070 FOR CN=1 TO NCUST

1080 INPUT# FD$,CN: REM Read Customer record from file

1000 FOR I=0 TO 3: INPUT CUST$(I): NEXT: INPUT# O

PF$=INCHS:

1100 PRINT "Customer No. :",CN

1110 FOR I=0 TO 3: PRINT PRMPT$(I),CUST$(I): NEXT:
PRINT

1120 IF PF$e»"P" THEN INPUT '"PRESS ENTER to go on:";Y$:
PRINT

1130 NEXT CN

1140 GOTO 800

287
‘ illel.“l._.lll_llll_lll.“.lll—llll—.nll‘- L E iy dateniars ko Lasiy

15

PROGRAMMABLE SOUND GENERATOR

All the functions of the Programmable Sound Generator
(usually abbreviated to PSG) are controlled by the zZ80
processor by means of a series of REGISTER loads. Each
register of the PSG relates ‘to & specific function
involved with the creation of a4 particular sound or

sound effect, The following table indicates the
respective functions and value ranges of the PsG
registers,
oL . i
Register:[_ Function] Range '
0 Channel A - lower 8 bits Pitch|0 to 2595
1 Channel A - upper 4 pits AR L TR §
2 Channel B - lower 8 Oits Pitch|0 to 255
3 Channel B - upper 4 bits I o TR
4 Channel C - lower 8 bits Ptich|{0 to 255
5 Channel C - upper 4 hits O £d 8
6 Noise period 0 ta! |3
T Enable O to, 2585
8 Channel A - Amplitude 0 o 131
9 Channel B - Amplitude O, to 39
10 Channel C - Amplitude Q%6 31
11 Envelope period lower 8 bits O to 255
12 Envelope period upper 8 bits 0 to 255
j Envelope shape/cycle O.to 45
14 Port A O to 255
& 73 LF‘Er‘t B _IG 'tD' 255
REGISTER 0 to 5
The values stored in these registers determine the
frequency, or pitch, of the OQutputs of the respective
Channels A, B and cC. Registers 0 and A1 control the

pitch of Channel A,
Channel B,
C.

register 2 and 3 the pitch of
and registers 4 and 5 the pitch of Channel

~in eiermine the Pitch

hannels is
THe piteh generated by each of the 3 ¢ al e
HEteimined by two registers for each channel. e
J?iugh satored 1n the two registers represent a 12-

mber (0 to 4095 in decimal).

e @quivalent 12-bit number, in decimal, can be found

Fam| -

:L P = 2566 x RU + RL

:'ﬁﬁvb:
fIF 18 the decimal equivalent of the 12=bit tone
Hrr::”tgsm?z;ér 8 bits (Register 0O for Channel A)
Ml is the upper 4 bits (Register 1 for Channel A)

BL can be thcught of as a "Efﬂi,;;g?” register and can

EauftﬂrtufaiEEHSEttzi-Zi:%: '"'coarse tune" register and

£4fl have any value in the range 0 to 15.

I find the pitch:-

2 X 1D6 Hertz

16 x TP

Filtoh

thus the higher the register values, the lower the

piltch,

289

To find the Register Values

. Given the desired pitch, it is possible to find the

values for the two registers for each channel.

First find the Tone Period (TP) from:-

TH =252 '} 105

16 x pitch (in Hertz)

Having determined the tone period, the register values
can be obtained as follows:-

RU + RL t= 1P
2956 256

Thus RU is given by the integer of (TP + 256) and RL
is given by multiplying the remainder from TP by 256
296

Example:

Required frequency is 100Hz - what are the register
values for Channel A?

For channel A RL is register 0 and RU is register 1

Calculating the Tone Period (TP):-

TP = 2 X 1Dﬁ

6 % 100

= 1250

290

fa find the value in register 1 (R1)
1 1250 (ie integer of 1250 + 256
256
4 (1250 + 256 = 4.88281)

e

Remainder from division is 0.88281
, . register 0 (RO) = 0.88281 x 256

= 226

Although the range of frequencies which can be produced
iy the sound generator is from 30.5Hz to 125kHz, this
is, in practice, 1limited by the capabilities of the
audio amplifier/speaker combination, which sets an
upper frequency limit of about 15kHz. (In practice,
the human ear also sets a limit of about 10 to 17/kHz,
depending upon the age of the listener).

REGISTER 6

Ihis register controls the frequency of the noise
generated by the PS&G, It is similar to the pitch
registers, previously described, except that there is
anly one register, and the range of noise frequencies
produced is from 4kHz to 125kHz.

291

W

To determine the Noise Frequency

6
Noise frequency = 2 x 10 Hertz
16 x R6

R6 represents the contents of register 6 (in
decimal), and can have values from 0 to 31.

Similarly, given the noise frequency:-

Then R6 = 2 x 10°

16 x Noise Frequency (Hertz)

REGISTER 7

This is an 8-bit control register which is used to
enable noise and pitch on channels Ay B and Gy andrto

control the direction of the keyboard scan ports, A and
B.

REGISTER 7

HBEIBE [Ba | B3 Laz 81 | Bﬂ

Keyboard Bit
Direction

Noise Generator Pitch Generator
Channel Channel

iy

Bits O to 2 - Enable pitch generator on channels A, B
and C

Bits 3 to 5 - Enable noise generator on channels A, B
and C

A logic 'O' in bits 0 to 5 will enable the respective
channel (ie O=on, 1=0ff)

Hits 6 and 7 - A '0' in bits 6 and 7 will configure the
keyboard ports as inputs, whilst a i G
will configure them as outputs, The
machine software normally configures

port A as output and port B as input
(i.e, B6 = i PR #2010%)

Notes:

Care should be excercised when setting up this

register, as writing to bits 6 and 7 could result in
the keyboard being disabled.

the PSG command in BASIC expects entry in decimal or
hexadecimal. It would be wise to select values for
this register which do not change the setting of bits 6
and 7 (as configured by the machine software).

REGISTERS 8 to 10

'hese registers control the amplitude of the signals
generated by each of the channels A, B and C, and also
nelects the "amplitude mode'. Register 8 controls

channel A, pregister 9 controls channel B, and register
10 controls channel C

NOT USED

l_"'—l

Amplitude
'""Mode"

4-bit "fixed"
amplitude level

293

lm.luﬂlmlli‘-‘ L T PR e ol

Bits 0 to 3 - Define the '"fixed" level amplitude of a
channel according to the value loaded

for each register (values from O to 15)

Bit 4 - A '0' in bit 4 selects '"fixed level amplitude"
mode, whilst a '1' will select '"variable level
amplitude'" and hence enable the Envelope
Generator. It follows therefore, that bits O
to 3, defining the value of a "fixed" level
amplitude, are only active when bit 4 = '0'
(i.e. they are ignored when bit 4 = 1 and
amplitude control passes to the Envelope
Generator)

Note: To turn a channel off the all zeros code is used
in bits 0 to 3 (i.e. 0000)

REGISTERS 11 and 12
These registers are used to control and vary the
frequency of the envelope generated (i.e. the Envelope
Period Control).
The values stored in these two registers represents a
16 bit number, known as the Envelope Period (EP), the
lower 8 bits being the envelope '"fine tune" (R11) and
the upper 8 bits the envelope ''coarse tune" (R12).
To Determine the Envelope Period (EP)

EP = 1200 o X0 sl BT

Where: -

EP is the decimal equivalent of the 16 bit Envelope
period number,

294

FhIET u_-—u_u_u_ll_IIII_II_IIII-“ | r

FT is the decimal equivalent of the '"fine tune"
register bits (i.e. lower 8 bit number).
CT is the decimal equivalent of the '"coarse tune"
register bits (i.e. upper 8 bit number).

lo Determine the Envelope Frequency

Envelope Frequency = 2 X 105
oo % EP

lo find the register values
Given the envelope frequencies it is possible to find

the values of the two registers.

First find the Envelope Period (EP) from:-

EP = £88 105

256 x Frequency

Having determined the envelope period, the register
values can be obtained as follows:-

CT+F_T :E
256 256

Thus CT is given by the integer of (EP+256)

and FT is given by multiplying the remainder from
EP by 256

256

I xample:
Required envelope frequency is 0.5Hz - what are the
register values?

Calculating the Envelope Period (EP):-
6

[L, = 15089
256 x 0.9

295

| hlﬁ'ﬂmuu-uu—u—u_u_uuaa.._....—.............._..._.......u

To find the value of register 12 (coarse tune
register CT)

Register 12 (CT)=]15,625 (i.e. integer of 15,025
256 + 256)
- 61 (15,256 + 256 = 61.035156)

L e——

Remainder from division is 0.035156

L

.'. register 11 (FT) = 0.035156 x 256
9

-
—_

- —————
—————

REGISTER 13

The lower 4 bits of register 13 control the envelope
shape and cycle. The upper 4 bits of the regilster are
not used.

Each of the 1lower 4 bits controls a function 1in the
envelope generator as follows:-

Bit O - HOLD
Bit 1 = ALTERNATE
Bit 2 - ATTACK
Bit 3 - CONTINUE
HOLD — When set to logic '1' limts the envelope to

one cycle, holding the last count of the
envelope counter (0000 or 1111, depending
whether the envelope counter was 1in a
count—down or count-up mode, respectively).

ALTERNATE - When set to logic '1', the envelope counter

reverses count direction (up-down) after
each cycle.

296

ATTACK -~ When set to 0gic: "1°, then envelope
counter will count up (attack) from 0000
to 111t when. set .to. .logic '0°, the
envelope counter will count down (decay)
from 1111 to 0000.

CONT INUE - When set to logic '1', the cycle pattern
will be as defined by the HOLD bit; when
set to logic '0', the envelope generator
will reset to 0000 after one cycle and

hold at that count.

Note: When both the HOLD bit and ALTERNATE bit are set
to '1', the envelope counter 18 reset to its initial

count before holding.

Fig.15.1 illustrates the various options available for
envelope generator output.

REGISTER 14 and 15

hese registers function as intermediate data storage
registers between the PSG/CPU data bus and the two I1/0
ports available on the PSG. Using these registers for
the transfer of I/0 data has no effect at all on sound
generation,

To output data from CPU to a peripheral on I/0 Port A

Latch address R7 (select Enable register)

_ Write data to PSG (setting bit 6 of R7 to '1')
Latch address R14 (select IOA register)

Write data to PSG (data to be output on 1/0 Port
A)

w2

ENVELOPE SHAPE/CYCLE CONTROL

R13 BITS
B3 B2 B1 BO
l A GRAPHIC REPRESENTATION
B & : OF ENVELOPE GENERATOR
Ev ¥ : : OUTPUT
P A I TIN
miinw|alalB
AU UIC|IT]| L
LE|E |KI|E D
o |0]o|X x'\\
4.10]11X% Kr/q
B A B NANNAN N ONONONN
e |[1]0]|0 1\\ ESEE FIG.15.2 FOR DETAIL
101011
131 V1Dl 1
12110
1311110
14111111
15111111

P T RSN N §T T T g s TRl @ JTEIFEET " T T ™ " " TErT® ™" T T'YCFTFEGTCTCTTTTEOYPCEFTCTCTCT OTERETOCTOCT TTREETETOT T T Illil.

Epl,,_, EP IS THE ENVELOPE PERIOD
(DURATION OF ONE CYCLE)

Fig.15.1

298

i

_ GRAPHIC REPRESENTATION e
1 OF THE DECIMAL VALUES OF bt
L THE ENVELOPE GENERATOR .

- OUTPUT

"

Ln EP -L EP 4

Fig.15.2
lo input data from I/0 Port A to CPU

I. Latch address R7 (select Enable register)

., Write data to PSG (setting bit 6 of R7 to '0')
}. Latch address R14 (select IOA register)

4., Read data from PSG (data from I/0 Port A)

Notes: Once loaded with data in the output mode, the
data will remain on the I/0 port(s) until changed
sither by loading different data, by applying a reset
ar by switching to the input mode.

299

R T TR o oy - = s k. £ 5 AT . A kA RY -

When in the input mode, the contents of registers 14
and/or 15 will follow the signals applied to the I/O
| port(s). However, transfer of this data to the CPU bus
| requires a "read'" operation as described above.

TEST BED PROGRAM

The following program is included to allow the user to
experiment with the various register values of the
hg Programmable Sound Generator and observe the results.

_ 10 CLS
\ 20 PRINT" PSG REGISTER CONTENTS' :PRINT
\ 30 REM*REGISTER EXAMINE
i 40 FOR A=0 TO 15: READ A$: PRINT HEX$(A,1),,A$: NEXT A
i 50 FOR A=0 TO 15
i 60 PRINT@10,A+2;HEX$(PSG(A),2)
1 70 NEXT A
i 80 REM *REGISTER CHANGE
b 90 PRINT"REGISTER(O TO F) DATA(HEX)"
il 100 A$=INCH$: IF A$=CHR$(13) THEN END
i 110 IF A$ < "0" OR A$>"F" THEN 100
i 120 PRINT A$,
| 130 B$=INCH$(2): D=VAL("&"+B$)
| 140 IF D <0 OR D>255 THEN 130
150 PSG VAL ("&"+A$),D
160 GOTO 50
170 DATA"CHA.FINE T","CHA.COARSE T(4 BIT)"
180 DATA"CHB.FINE T","CHB.COARSE T(4 BIT)"
| 190 DATA"CHC.FINE T","CHC.COARSE T(4 BIT)"
| 200 DATA"S BIT NOISE","EN.B A N.CBA T.CBA","A AMP", "B

AMP'" ,"C AMP'" ,"ENV.FINE","ENV.COARSE" ,"ENV.SHAPE (4
BIT)"

| 210 DATA"I/O PORT A","I/O PORT B"

’ Type 1in the program in BASIC if you wish to experiment
| with the PSG.

300

i

{he following display appears on the screen when the
program is RUN

PSG REGISTER CONTENTS

0 00 CHA. FINE T

1 00 CHA.COARSE T (4BIT)

2 00 CHB. FINE T

3 00 CHB. COARSE T (4 BIT)
4 00 CHC. FINE T

5 00 CHC. COARSE T (4 BIT)
6 00 5 BIT NOISE

7 7F EN. B A N.CBA T. CBA
H 00 A AMP

0 00 B AMP

A 00 C AMP

1 00 ENV. FINE

& 00 ENV. COARSE

D 00 ENV. SHAPE (4 BIT)

t 00 I/0 PORT A

= Fr I/0 PORT B

REGISTER (0 to F) DATA (HEX)

'he registers are numbered down the left hand side 0 to
F (in HEX). The centre column displays the register

contents (in HEX). The corresponding functions are
| {inted down the right hand side (relate these to the
previous sections of this chapter).

fo use the program

{, Gelect a register number from O to F and key it in.,
Ihe number will appear below the column of register
numbers at the initial cursor position. The cursor
will then transfer to a position below the centre
column of register values.

301

! Illii.'l.-.lun- - B mm o P g i

2. Key in the required value (in HEX) for that

register. The value will automatically appear in
the table on the screen and the cursor will thEH‘

return to the left hand column pPosition ready for

the next E‘F‘Itl"‘y.

Tﬁe following values are given as an example to begin
with, These values will set Uup a single tone from all

three channels (A, B, C).

Register 0 - 20 |

Register 1 < 01

Register 2 - 20 Tone Generator Control
Register 3 - 01 r-(Fine and Coarse Tune)
Register 4 - 20

Register 5 - 01

Register 6 - 00 Noise Generator

Register 7 - 78 Noise/Tone Select and Enable

Register 8 - 18 Amplitude of Channel A
Reg%ster 9 - 18 Amplitude of Channel B
Register A - 18 Amplitude of Channel C
Reg?ster B - 00 Envelope Period Control
Register C - QD l (Fine and Coarse Tune)
Register D - 08 Envelope Shape (See Figi:15.1)
Register € - 00 I/0 Port A

Register F - FF I/0 Port B

The values in registers 0 to 5 set the Coarse and Fine
tune of the tone generator,

Hegister 6 is not given a value because the example is
using a tone rather than a noise.

ifhe value given 1in Register 7 selects the Tone

Benerator, as appose to the Noise Generator, and

ghables each of the channels A, B, C.

Begister B (decimal 11) 1is the envelope period fine
M tune and is not wused in this example whereas the

glivelope period coarse tune 1is set by the value in
pegister C (decimal 12).

fThe value 1in register D (decimal 13) selects an
#hhvelope shape which gives an intermittent effect (see
table in Fig.15.1)

fhe values in registers E (decimal 14) and F (decimal
%) should not be changed since the I/0 ports are not
heing used. (The I/0 ports are used to scan the
keyboard),

Having set up the given example, <c¢hange some of the
register values and observe the effect on the sound
given, When selecting new values for the register the
following points should be noted.

n) Values for register 7 should lie within the range

&40 to &7F so as to avoid the possibility of
disabling the keyboard.

b) A value of &47 in register 7 will select the
Noise Generator, rather than tone generator, and
enable channels A, B, C. In this case a value
can also be given to register 6

303

T — & 8GR L o

e T e

SOUND VARIATION

Relative Channel Volume

The 1independently programmable amplitude control for
each channel allows up to 16 levels if using the
processor controlled amplitude mode (bit 4 of registers
8, 9y or 40'=0)."In the case of & decaying or steady
note, when a note is played or "fired", a frequency may
be set up in the coarse and fine tune registers and
then an amplitude value placed in the respective
register 10, 11, or 12. The value which is placed to
play the tune can be an independent varliable, allowing
channels to play their respective melody lines with
varying force.

Decay
One difference between sounds is the speed with which
the note gains and loses volume. This 1is known as

attack and decay. If all of the notes can be decayed
at a uniform rate, the automatic envelope generator can
be set to produce a decaying waveform. Each of the
three channels can have the same decay constant but

differing playing times to simulate the same instrument
with differing note strike-times.

Other Effects

The addition of variable noise to any or all of the
channels can produce effects such as "breathing" with a
wind instrument. Or noise can be used alone to produce
a drum rhythm. The fact that the noise dominant
frequencies are variable allows "'synthesizer" type
effects with simple processor interaction,

Other pleasing effects include vibrato and tremolo, the
cyclical variation of the frequency and volume.
Because an intelligent microprocessor is controlling

the effect, they can be all keyed to the tune itself or
to other external stimuli.

304

APECIAL SOUND EFFECTS

e of the main uses of the PSG 1is to produce
non=musical sound effects to accompany visual action or
8% a4 feature in 1itself, The following sections outline
techniques and provide actual examples of some popular
gffects.,

fone Only Effects

Many effects are possible wusing only the tone
generation capability of the PSG without adding no%se
and without using the PSG's envelope generation
gapability., Examples of this type of effect would
include telephone tone frequencies (two distinct
frequencies produced simultaneously) or the European
Giren effect listed below (two distinct freguencies
apquentially produced) .

EUROPEAN SIREN SOUND EFFECT

Ihe following BASIC listing will produce the European
giren effect,

10 REM SIREN EFFECT

20 FOR I=0 TO 8

10 PSGO,254:PSG1,0

40 PSG7,126

Hh PSGE, 15

G0 FOR J=1 TO 300:NEXT
o Pl BG:PSGIT

HO FOR J=1 TO 300:NEXT
B0 NEXT I
100 PSG8B,0
110 END

305

L A A A A A L AR A B S e e e s & & .4 g B - i FR PR |

r

T —

I%iii-mt-ml-m-niﬁiiilﬂiiﬂn_m-m—n|-u||-|u—uu-um-i i

Noise Only Effects

Some of the more commonly required sounds require only
the wuse of noise and the envelope generator (op
processor control of channel envelope if other channels
are using the envelope generator).
Examples of this, 1listed below, are gunshot and
explosion, In both cases pure noise 1s used with a
decaying envelope.

In the examples shown the only changes are in the

length of the envelope as modified by the coarse tune
register and in the noise period,

GUNSHOT SOUND EFFECT
The following BASIC listing will produce the effect,

10 REM GUNSHOT

20 FOR J=1 TO 4

30 PSG6,15:PSG7, 71

40 PSG8,16:PSG9,16:PSG10, 16

50 PSG12,16

60 PSG3,0

70 T=RND(2000) :FOR I=1 TO T:NEXTI
80 NCXT J

90 END

306

EXPLOSION SOUND EFFECT

Ihe following BASIC 1isting will produce the Exposion
Bfrect

10 REM EXPLOSION

20 PSG6,31:PSG7, 71

0 PSG 8,16:PSG9,16:PSG10, 16
40 PSG12,100

50 PSG13,0

60 END

'requency Sweep Effect
The Laser, Whistling Bomb, Wolf Whistle, and Race Car

swounds, listed below, all utilize frequency sweeping
effects, In all cases they involve the increasing or
decreasing of the values in the tone period registers
with variable start, end, and time between frequency
changes. For example, the sweep speed of the Laser is
much more rapid than the high gear accelerate in the
race car, yet both use the same computer routine with
differing parameters.

Other easily achievable results include '"doppler" and
noise sweep effects. The sweeping of the noise
clocking register (R6) produces a '"doppler" effect
which seems well suited for '"space war'" type games.

307

LASER SOUND EFFECT SBUA L -Channel Effect

#RlEE of the 1independent architecture of the PSG,

The Fullawing BASIC liEtiﬂg will produce }" Fathar complex effects are possible without

the Lasep

Sound EFFECt. lgﬁﬁihu the processor. For Example, the Wolf Whiﬁtle
'fgt helow shows two channels in use to add constant

10 REM LASER ;tﬁ himswing noise to the three concentrated
20 PSG7,126 ;:Hﬁﬁtv aweeps of the whistle., Once the noise is put
S0 PSG8, 15 2 ;ﬁhﬁ thannel, the processor only need be concerned
40 FGR I=1B TO 255 STEP 40 e :h the fPUHUEHﬂF sweep gperatiﬂﬂ-

90 PSGO, I |

00 NEXT WOLF WHISTLE SOUND EFFECT

70 FOR 1=255 TO 18 STEP-10 : *

SG PSGO, 1 , : % following BASIC 1listing will produce the MWolf
0 NEXT b Biatle offect.

100 END '

S HEM WOLF WHISTLE

&0 PHGO,1:PSG7,110:PSG9, 9

20 PBG1,0:PSG8, 15

#0 FOR I=64 TO 32 STEP-.35:PSGOQ,I:NEXT
80 FOR I=0 TO 150:NEXT

Bl FOR I=64 TO 48 STEP-.17:PSGO, I:NEXT

WHISTLING BOMB EFFECT

10 REM WHISTLING BOMB

OR 1l=48 TO 104 STEP.9:PSGO ., E:NEXT
20 PSG7, 126 ;” Lunn U:ESGQ 0 }
. PSGB’15 gt | ND 1 :
40 FOR I=1 TO 255
o fosittg RACE CAR SOUND EFFECT
60 NEXT .

70 PSG6,31:PSG7, 71

90 PSG12,100 a #ffect, including gear changes.
:?g 25213’0 10 Hlm HﬂQING CAR
20 PBG3, 15
10 PBG7,124
a0 PEGB,15:PSG9,10
8t B8=11:1F=4:G0SUB110
B H=0:1F=3:G0SUB110
ro 8s0:F=1:GOSUB110
g PBGB,0:PSGO,0

309

: | § ' FEeea—"

!

:
i

5
I
]

&

|

90
100
110
120
130
140
150

T S

END

REM SWEEP ROUTINE
FOR I=S TO F STEP=-1:PSG1, 1

PSGO, 255

FOR J=265 TO 0 STEP-1:PSGO,J
NEXT J,1I

RETURN

310

WORD

ABS
ADC
AND
APPEND
ASC
ATN
AUTO
BCOL
HEEP
BINS$
HTN
CALL
CHAIN
CHR$
CLEAR
CLOSE
CLS
CONT
COS
CREATE
DATA
DEEK
DEF
DEG
DEL
DIM
1)1 K
DOKE
DOS
LIAW
DR IVE
ELLIPSE

APPENDIX A

LIST OF RESERVED WORDS

WORD

ELSE
END
EOF
ERA
ERL
ERR
EVAL
EXP
FILL
FMT
FN
FOR
GCOL
GOSUB
GOTO
HEX$
HOLD
IF
INCH
INCH$
INP
INPUT
INPUT#
INT
I0OM
KBD
KBD$
KEY
LEFT$
LEN
LET
LIST

WORD

LISTP
LN

LOAD
LOCK
LOG
MAG
MGE
MID$
MOD
MOS
MULS$
MUSIC
NEW
NEXT
NOT
NULL
OFF
ON
OPEN
OR
ORIGIN
ouT
PEEK
PI
PLOT
POINT
POKE
POLY
POP
POS
PRINT
PRINT#

311

WORD

PSG
PSW

PTR
RAD
READ
REM
REN
RENUM
RESTORE
RETURN
RIGHT$
RND
RUN
SAVE
SCRN$
SEP
SGN
SHAPE
SIN
SIZE
SPC
SPEED
SPRITE
SQR
STEP
STOP
STR$
SWAP
TAB
TAN
TCOL
TEMPO

WORD

THEN
T1$

TO
UNLOCK
UNPLOT
VAL
VDEEK
VDOKE
VERIFY
VOICE
VPEEK
VPOKE
WAIT
WIDTH
XOR
ZONE

ERROR. MESSAGE
Break

Next

Syntax
Return

Data

Qty

Ovfl

Mem Full
Branch
Range

Dimension

Division
Stack Full

Str Ovfl
Str Complex

Cont

APPENDIX B

INDEX TO ERROR MESSAGES

HEX
00

01

02
03

04
05
06
07
08
09

OA

OB
0] &

oD

OE

OF
10

11

CODE
DECIMAL
0 Interruption from keyboard
or execution of STOP
1 NEXT statement found with-
out corresponding FOR
e Typing error in current line
3 RETURN found without
corresponding GOSUB
4 No more DATA statements for
READ
5 Number specified outside
allowable range
5 Number too large
r No more memory left
8 Attempt to refer to
non-existent line
9 Outside dimensions speci-
fied for array
10 DIM encountered for already
dimensioned array
11 Divide by Zero
12 No more stack for FILL FOR,
GOSUB or expressions
g 75 String given when number
expected or vice versa
14 Reserved Word not defined
in system
19 String expression too long
16 String expression too
complex —-- split it up!
17 Cannot continue after error

or program modification

312

i_ll_llll_III_II_Il_III—H_II—"I-“_"_" Tt (B I eTTEI T I T lﬂll |

Fn Defn 12 18 FN user function not
defined by a previous DEF

Uperand 13 19 Operand expected in
expresssion

Bad Data 14 20 Disc checksum error

End of Text 15 21 End of File encountered or
last block of file read.

File 16 22 FDESC not defined (or used
by another file)

Urive Select 17 23 Drive selected not
available in system

File Type 18 24 File of incorrect type

DISC ERRORS

No File 19 25 File not found

File Existn 1A 26 REnaming existing file

File Locked 1B 27 File has been locked ('"Read
Only")

Disc Locked 1C 28 Disc is in "Read Only'" mode

Disc Seek 1D 29 Attempt to seek beyond end
of disc

Disc Full 1E 30 No space for file contents

Dir Full 1F 31 Too many files in Directory

Shape Defn 20 32 Wrong number or character
type 1n definition string

Key Defn 21 33 Function key string is too
long

Write Protect 22 34 Save to write protected disc
a3

N S L ¥ ih

|

h"“"“Il_"_“-“.“m-ﬁ-ﬂ_ll-ll-ll TR R T ——

MEMORY MAP FOR TATUNG/Xtal BASIC 4

APPENDIX C

FREE SPACE FOR
MACHINE-CODE

ROUTINES

TOPRAM rs-:,

INTERNAL “vpu~

FOR EDITOR

L e

T S —— e —

STRINGS

LIMIT rra-20

SEacd e VRAM PTR-19

——STKBOT +va-1s

(FREE SPACE—-

FIGURE RETURNED

BY “Sizg")

STHBOT PTR=17

ARRAYS

—— e e —

.

XTAL BASIC

PROGRAM TEXT

AHRTOP PTR-18

it i __VARTOP PTR—15

e e TXTTOP PTR—14

v i o TEXT PTR—1

HTEXT #rr-o

314

- '![

i

VDP MEMORY MAP

SPRITE ATTR TABLE

128 BYTES

APPENDIX D

TEXT POSITION
TABLE 980K

iy — 3CO00

PATTERN NAME

TABLE 3/4K

- 3B0OO

PATTERN

COLOUR

TABLE 8K

SPRITE PATTERN/
TEXT PATTERN

TABLE 2k

3800

| — 2000

PATTERN

GENERATOR

TABLE 6K

1800

315

0000

— i g AT T T T R g U e T

NOTES

VDP REGISTERS DEFAULT SETTINGS

RO

R1
R2

R3

R4
RS
R6
R7

02
co
OE
PE
03
76
03
F4

Sprite patterns 0-31H occuply bottom 256 bytes of
the sprite PATTERN TABLE.

Text

table.

patterns,

including printable graphics
shapes above shape 127,

occupy the text pattern

	fr
	front
	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78
	page79
	page80
	page81
	page82
	page83
	page84
	page85
	page86
	page87
	page88
	page89
	page90
	page91
	page92
	page93
	page94
	page95
	page96
	page97
	page98
	page99
	page100
	page101
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128
	page129
	page130
	page131
	page132
	page133
	page134
	page135
	page136
	page137
	page138
	page139
	page140
	page141
	page142
	page143
	page145
	page146
	page147
	page148
	page149
	page150
	page151
	page152
	page153
	page154
	page155
	page156
	page157
	page158
	page159

