Microsoft BASIC Reference Manual

Note

Example

<file number> is an integer expression whose
value is between 1 and 15. The number is associ-
ated with the file as long as it is OPEN and refers
other disk I/0 statements to the file,

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, if included,
sets the record length for random files. The default
record length is 128 bytes.

A file can be OPENed for sequential input or ran-
dom access on more than one file number at a time,
A file may be OPENed for output, however, on
only one file number at a time.

10 OPEN “1”2 “INVEN"

See also “Disk File Handling,” in the Microsoft
BASIC User’s Guide.

246 OPTION BASE

Syntax

Purpose

Remarks

Example

78

OPTION BASE n

wherenis 1 or 0

To declare the minimum value for array sub-
scripts.

The default base is 0. If the statement
OPTION BASE 1

is executed, the lowest value an array subscript
may have is 1.

OPTION BASE 1

247 OUT

Syntax

Purpose

Remarks

Example

Microsoft BASIC Commands and Statements

ouT I,J

where I and J are integer expressions in the range
0 to 255.

To send a byte to a machine output port.

The integer expression I is the port number. The
integer expression J is the data to be transmitted.

100 OUT 32,100

248 POKE

Syntax

Purpose

Remarks

Example

POKE |,J

where I and J are integer expressions.
To write a byte into a memory location.

I and J are integer expressions. The expression I
represents the address of the memory location and
J is the data byte. I must be in the range -32768 to
65535. (For interpretation of negative values of I,
see “VARPTR,” Section 3.43.)

The complementary function to POKE is PEEK.
The argument to PEEK is an address from which
a byte is to be read. See Section 3.28. '

POKE and PEEK are useful for storing data effi-
ciently, loading assembly language subroutines,

and passing arguments and results to and from
assembly language subroutines.

10 POKE &H5A00,&HFF

79

Microsoft BASIC Reference Manual

249 PRINT

Syntax PRINT [<list of expressions>]

Purpose To output data at the terminal.

Remarks If <list of expressions> is omitted, a blank line is

printed. If <list of expressions> is included, the
values of the expressions are printed at the termi-
nal. The expressions in the list may be numeric and/

or string expressions. (Strings must be enclosed in
quotation marks.)

Print Positions

The position of each printed item is determined by
the punctuation used to separate the items in the
list. Microsoft BASIC divides the line into print
zones of 14 spaces each. In the list of expressions,
a comma causes the next value to be printed at the
beginning of the next zone. A semicolon causes the
next value to be printed immediately after the last
value. Typing one or more spaces between expres-
sions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of ex-
pressions, the next PRINT statement begins print-
ing on the same line, spacing accordingly. If the
list of expressions terminates without a comma or
a sernicolon, a carriage return is printed at the end
of the line. If the printed line is longer than the ter-
minal width, Microsoft BASIC goes to the next
physical line and continues printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Nega-
tive numbers are preceded by a minus sign. Single
precision numbers that can be represented with 6
or fewer digits in the unscaled format no less ac-
curately than they can be represented in the scaled
format are output using the unscaled format. For
example, 1E-7 is output as .0000001 and 1E-8 is
output as 1E-08. Double precision numbers that

Example 1
- -r“’D
Example 2

Microsoft BASIC Commands and Statements

can be represented with 16 or fewer digits in the
unscaled format no less accurately than they can
be represented in the scaled format are output us-
ing the unscaled format. For example, 1D-15 is

output as .0000000000000001 and 1D-16 is out-
put as 1D-16.

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5§6

20 PRINT X + 5,X-5,X «(-5),X*5
30 END

RUN

10 0 ~25 3125
Ok

In this example, the commas in the PRINT state-
ment cause each value to be printed at the begin-
ning of the next print zone.

LIST
10 INPUT X
20 PRINT X “SQUARED IS” X*2 “AND"":
30 PRINT X “CUBED IS" X*3
40 PRINT
50 GOTO 10
Ok
RUN
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

?7 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?
In this example, the semicolon at the end of line 20
causes both PRINT statements to be printed on

the same line. Line 40 causes a blank line to be
printed before the next prompt.

81

Microsoft BASIC Reference Manual

Example 3

10 FOR X=1TO 5

200=J+5

30 K=K+10

40 7J;K;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed immedi-
ately after the preceding value. (Don’t forget, a
number is always followed by a space, and positive
numbers are preceded by a space.) In line 40, a
question mark is used instead of the word PRINT.

2.50 PRINT USING

Syntax

Purpose

Remarks
and
Examples

ey

82

PRINT USING <string exp>:<list of expressions>

To print strings or numbers using a specified
format,

<list of expressions> is comprised of the string ex-
pressions or numeric expressions that are to be
printed, separated by semicolons. <string exp> is
a string literal {or variable) comprised of special
formatting characters. These formatting char-
acters (see below) determine the field and the for-
mat of the printed strings or numbers,

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to for-
mat the string field:

Specifies that only the first character in the given
string is to be printed.

“\n spaces\”’

H&"

Microsoft BASIC Commands and Statements

Specifies that 2+n characters from the string are
to be printed. If the backslashes are typed with no
spaces, two characters will be printed; with one
space, three characters will be printed, and so on.
If the string is longer than the field, the extra
characters are ignored. If the field is longer than
the string, the string will be left-justified in the
field and padded with spaces on the right.

Example

10 A$ = "LOOK":B$ = “OUT"

30 PRINT USING “1";A$:B$

40 PRINT USING “\ \";A$:B$

50 PRINT USING “\ \";A$:B$:"11"
RUN

LO

LOOKOUT

LOOK OuT !

Specifies a variable length string field. When the
field is specified with “&”, the string is output
without modification.

Example

10 A$ = “LOOK":B$ = “OUT"
20 PRINT USING “I";AS;

30 PRINT USING “&";B$
RUN

LOUT

Numeric Fields

When PRINT USING is used to print numbers,
the following special characters may be used to
format the numeric field:

A number sign is used to represent each digit posi-
tion. Digit positions are always filled. If the
number to be printed has fewer digits than posi-
tions specified, the number will be right-justified
(preceded by spaces) in the field.

Microsoft BASIC Reference Manual

L2

A decimal point may be inserted at any position in
the field. If the format string specifies that a digit
is to precede the decimal point, the digit will
always be printed (as 0, if necessary). Numbers are
rounded as necessary.

PRINT USING “##.##":.78
0.78

PRINT USING "“###.##":987 654
987.65

PRINT USING “##.4# "110.2,5.3,66.789,.234
10.20 530 66.79 0.23

In the last example, three spaces were inserted at
the end of the format string to separate the printed
values on the line.

A plus sign at the beginning or end of the format
string will cause the sign of the number (plus or
minus) to be printed before or after the number.

A minus sign at the end of the format field will
cause negative numbers to be printed with a trail-
ing minus sign.

PRINT USING “ + ##.## ",~68.95,2.4,55.6,-.9
-6895 +240 +5560 -0.90

PRINT USING “##.#4-~ ",-68.95,22.449,-7.01
68.95- 2245 7.01-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric field to
be filled with asterisks. The ** also specifies posi-
tions for two more digits.

PRINT USING "“**#.# "12.39, - 0.9,765.1
*124 *-09 765.1

£

.¢$

AAAA

Microsoft BASIC Commands and Statements

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The 3 specifies two more digit positions,
one of which is the dollar sign. The exponential for-
mat cannot be used with $$. Negative numbers can-
not be used unless the minus sign trails to the right.

PRINT USING "$$###.##",456.78
$456.78

The **$ at the beginning of a format string com-
bines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a dollar
sign will be printed before the number. **$
specifies three more digit positions, one of which is
the dollar sign. ’

PRINT USING "“* *$##.4#",2.34
***$2.34

A comma that is to the left of the decimal point in
a formatting string causes a comma to be printed
to the left of every third digit to the left of the
decimal point. A comma that is at the end of the
format string is printed as part of the string. A
comma specifies another digit position. The comma
has no effect if used with the exponential (AAAA)
format.

PRINT USING “####,.##',1234.5
1,234.50

PRINT USING “##t#i.44,",1234.5
1234.50,

Four carets (or up-arrows) may be placed after the
digit position characters to specify exponential
format. The four carets allow space for E+xx to be
printed. Any decimal point position may be speci-
fied. The significant digits are left-justified, and
the exponent is adjusted. Unless a leading + or
trailing + or - is specified, one digit position will
be used to the left of the decimal point to print a
space or a minus sign.

Microsoft BASIC Reference Manual

PRINT USING “‘##.##":234 56
2.35E + 02

PRINT USING “.####*+-"-388888
.BB89E + 06

PRINT USING * 4 .##r-123
+.12E+03

— An underscore in the format string causes the next
character to be output as a literal character.

PRINT USING “_l##.#4__1"12.34
112.34!

The literal character itself may be an underscore
by placing “‘__" in the format string.

o If the number to be printed is larger than the speci-
fied numeric field, a percent sign is printed in front
of the number. If rounding causes the number to
exceed the field, a percent sign will be printed in
front of the rounded number.

PRINT USING “##.##",111.22
%111.22

PRINT USING “.##";.999
% 1.00

If the number of digits specified exceeds 24, an
“Illegal function call” error will result.

251 PRINT# and PRINT# USING

Syntax PRINT#<file number>,[USING <string exp>;]
<list of expressions>

Purpose To write data to a sequential disk file.

Remarks <file number> is the number that was used when

86

&

M\

O

Microsoft BASIC Commands and Statements

the file was OPENed for output. <string exp> is
comprised of formatting characters as described in
Section 2.50, “PRINT USING.” The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just as it
would be displayed on the terminal screen with a
PRINT statement. For this reason, care should be
taken to delimit the data on the disk, so that it will
be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example:

PRINT#1,A;B;C;XY;Z

(If commas are used as delimiters, the extra blanks
that are inserted between print fields will also be
written to the disk.)

String expressions must be separated by semi-
colons in the list. To format the string expressions
correctly on the disk, use explicit delimiters in the
list of expressions.

For example, let A$=“CAMERA"” and B$=
“93604-1"". The statement

PRINT#1,A$;B$

would write CAMERA93604-1 to the disk.
Because there are no delimiters, this could not be
input as two separate strings. To correct the prob-

lem, insert explicit delimiters into the PRINT#
statement as follows:

PRINT#1,A$;",";BS
The image written to disk is
CAMERA,93604-1

which can be read back into two string variables.

87

Microsoft BASIC Reference Manual

88

If the strings themselves contain commas, semi-
colons, significant leading blanks, carriage returns,
or line feeds, write them to disk surrounded by
explicit quotation marks, CHR$(34).

For example, let A$=“CAMERA, AUTOMATIC"
and B$=* 93604-1". The statement

PRINT#1,A$;B$

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1

And the statement

INPUT#1,A$,B%

would input “CAMERA” tu A$ and “AUTO-
MATIC 93604-1" to B$. To separate these strings
properly on the disk, write double quotation marks

to the disk image using CHR$(34). The statement

PRINT#1,CHR$(34);A$;CHR$(34):CHR$(34); BS:
CHR$(34)

writes the following image to disk:
“CAMERA, AUTOMATIC"* 93604-1"
And the statement

INPUT#1,A%,B$

would input “CAMERA, AUTOMATIC” to A$
and “ 93604-1" to B$.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING"$$###. 84, :J;K;L

e e

Microsoft BASIC Commands and Statements

For more examples using PRINT#, see “‘Disk File
Handling,"” in the Microsoft BASIC User's Guide.

See also “WRITE#,” Section 2.68.

252 PUT

Syntax PUT [#]<file number>[,<record number>]

Purpose To write a record from a random buffer to a ran-
dom disk file.

Remarks <file number> is the number uﬁder which the file

was OPENed. If <record number> is omitted, the
record will assume the next available record
number (after the last PUT). The largest possible

record number is 32,767. The smallest record
number is 1.

Example See ‘‘Disk File Handling,” in the Microsoft
BASIC User's Guide.

Note PRINT#, PRINT# USING, and WRITE# may be
used to put characters in the random file buffer
before executing a PUT statement.

In the case of WRITE#, Microsoft BASIC pads
the buffer with spaces up to the carriage return.
Any attempt to read or write past the end of the
buffer causes a “Field overflow” error.

89

Microesoft BASIC Reference Manual

2.53 RANDOMIZE

Syntax
Purpose

Remarks

Example

RANDOMIZE [<expression>)
To reseed the random number generator.

If <expression> is omitted, Microsoft BASIC
suspends program execution and asks for a value
by printing

Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN,
To change the sequence of random numbers every
time the program is RUN, place a RANDOMIZE
statement at the beginning of the program and
change the argument with each RUN.

10 RANDOMIZE

20FORI1=1TOS

30 PRINT RND;

40 NEXT |

RUN

Random Number Seed (-32768 to 32767)? 3

(user types 3}

.88508 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (-32768 to 32767)? 4

{user types 4 for new sequence)

803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (-32768 to 32767)? 3

(same sequence as first RUN)

.88598 484668 .586328 .119426 .709225
Ok

Microsoft BASIC Commands and Statements

254 READ

Syntax

Purpose

Remarks

Example 1

READ <list of variables>

To read values from a DATA statement and

assign them to variables. {See “DATA,"” Section
2.10.)

A READ statement must always be used in con-
junction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the values
read must agree with the variable types specified.
If they do not agree, a ““Syntax error’’ will result.

A single READ statement may access one or more
DATA statements (they will be accessed in order),
or several READ statements may access the same
DATA statement. If the number of variables in
<list of variables> exceeds the number of elements
in the DATA statement(s), an ‘“‘Out of data’’ error
message is printed. If the number of variables
specified is fewer than the number of elements in
the DATA statement{s), subsequent READ
statements will begin reading data at the first
unread element. If there are no subsequent READ
statements, the extra data is ignored.

To reread DATA statements from the start, use

the RESTORE statement (see “‘RESTORE,’” Sec-
tion 2.57).

80 FORI=1TO 10

90 READ A()

100 NEXT |

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

91

Microsoft BASIC

Example 2

255 REM

Syntax

Purpose

Remarks

Important

92

Reference Manual

This program segment READs the values from
the DATA statements into the array A. After ex-
ecution, the value of A(l) will be 3.08, and so on.

LIST

10 PRINT “CITY", “STATE", " ZIP"

20 READ C$,5%,Z

30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,5%,Z

Ok

RUN

CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data
from the DATA statement in line 30.

REM <remark>

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into from a
GOTO or GOSUB statement. Execution will con-
tinue with the first executable statement after the
REM statement.

Remarks may be added to the end of a line by

preceding the remark with a single quotation mark
instead of :REM.

Do not use this in a data statement, because it
would be considered legal data.

)

Example

Microsoft BASIC Commands and Statements

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1T70 20

140 SUM=SUM + V()

or

120 FORI=1TO 20 ‘CALCULATE AVERAGE
VELOCITY

130 SUM = SUM + V(i)
140 NEXT |

256 RENUM

Syntax

Purpose

Remarks

RENUM [[<new number>]{,[<old number>}
[,<increment>]]]

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the first
line of the program. <increment> is the increment
to be used in the new sequence. The default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB, and ERL statements to reflect the
new line numbers. If a nonexistent line number
appears after one of these statements, the error
message ‘“‘Undefined line number in xxxxx’ is

93

Microsoft BASIC Reference Manual

Note

Examples

printed. The incorrect line number reference is not
changed by RENUM, but line number YYYYyy may
be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when
the program has three lines numbered 10, 20, and
30) or to create line numbers greater than 65529,
An “lllegal function call’”’ error will result.

RENUM Renumbers the entire program.
The first new line number will
be 10. Lines will be numbered
in increments of 10.

RENUM 300,,50 Renumbers the entire program,
The first new line number will
be 300. Lines will be numbered
in increments of 50.

RENUM 1000,900,20 Renumbers the lines from 900
up so they start with line
number 1000 and are numbered
in increments of 20.

257 RESTORE

Syntax
)
Purpose

Remarks

Example

94

RESTORE [<line number>)

To allow DATA statements to be reread from a
specified line.

After a RESTORE statement is executed, the
next READ statement accesses the first item in
the first DATA statement in the program. If
<line number> is specified, the next READ state-
ment accesses the first item in the specified DATA
statement.

10 READ AB,C

20 RESTORE

30 READ D,E,F

40 DATA 57, 68, 79

Microsoft BASIC Commands and Statements

258 RESUME
Syntax RESUME
RESUME 0

Purpose

Remarks

Example

RESUME NEXT
RESUME <line number>

To continue program execution after an error
recovery procedure has been performed.

Any one of the four syntax shown above may be
used, depending upon where execution is to
resume;

RESUME Execution resumes at the
or statement which caused the
RESUME 0 error.

RESUME NEXT Execution resumes at the

statement immediately
following the one which
caused the error.

RESUME <line number>
Execution resurnes at
<line number>>,

A RESUME statement that is not in an error
handling routine causes a “RESUME without er-
ror’’ message to be printed.

10 ON ERROR GOTO 900

900 IF (ERR = 230)AND(ERL = 90) THEN PRINT
“TRY AGAIN':RESUME 80

%

Microsoft BASIC Reference Manual

259 RUN

Syntax 1

Purpose

Remarks

Example
Pﬁrpose

Remarks

Example

Note

RUN [<line number>]
To execute the program currently in memory.

1f <line number> is specified, execution begins on
that line. Otherwise, execution begins at the
lowest line number. Microsoft BASIC always
returns to command level after a RUN is executed,

RUN
RUN <filename>[,R]
To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd. (Your operating system may append a
default filename extension if one was not supplied
in the SAVE command. Refer to “Disk File Han-
dling,” in the Microsoft BASIC User's Guide for
information about possible filename extensions
under your operating system.)

RUN closes all open files and deletes the current
contents of memory before loading the designated
program. However, with the R option, all data files
remain OPEN,

RUN “NEWFIL" R

See also “Microsoft BASIC Disk I/0,” in the
Microsoft BASIC User's Guide.

Microsoft BASIC Compiler supports the RUN
and RUN <line number> forms of the RUN state-
ment. Microsoft BASIC Compiler does not sup-
port the R option with RUN. If you want this
feature, the CHAIN statement should be used,

y

a

Microsoft BASIC Commands and Statements

260 SAVE

Syntax

Purpose

Remarks

Examples

SAVE <filename>[{,A|,P}]
To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system'’s requirements for file-
names. (Your operating system may append a
default filename extension if one was not supplied
in the SAVE command. Refer to “Disk File Han-
dling,” in the Microsoft BASIC User’s Guide for
information about possible filename extensions
under your operating system.) If <filename>
already exists, the file will be written over.

Use the A option to save the file in ASCII format.
Otherwise, Microsoft BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access re-
quires that files be in ASCII format. For instance,
the MERGE command requires an ASCII format
file, and some operating system commands such
as LIST may require an ASCII format file.

Use the P option to protect the file by saving it in
an encoded binary format. When a protected file is
later RUN (or LOADed), any attempt to list or
edit it will fail.

SAVE “COM2" A
SAVE “PROG" P

See also ““Disk File Handling,” in the Microsoft
BASIC User’s Guide.

97

Microsoft BASIC Reference Manual

2.61 STOP

Syntax STOP

Purpose To terminate program execution and return to
command level.

Remarks STOP statements may be used anywhere in a pro-

gram to terminate execution. When a STOP is en-
countered, the following message is printed;
Break in line nnnnn
Unlike the END statement, the STOP statement
does not close files.
Microsoft BASIC always returns to command
level after a STOP is executed. Execution is
resumed by issuing a CONT command (see Section
2.8).

Example 10 INPUT AB,C
20 K= A*2+5.3:L = B*3/.26
30 STOP
40 M=C+K+ 100:PRINT M
RUN
7123
BREAK IN 30

4 Ok
, PRINT L
30.7692
Ok
CONT
115.9
Ok

98

Microsoft BASIC Commands and Statements

262 SWAP

Syntax SWAP <variable> <variable>

Purpose To exchange the values of two variables.

Remarks Any type variable may be SWAPped (integer,
single precision, double precision, string), but the
two variables must be of the same type or a ““Type
mismatch” error results.

Example LIST

10 A$="ONE " :B$=* ALL " : C$="FOR"
20 PRINT A% C$ B$
30 SWAP A3, BS
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

263 TRON/TROFF

Syptax

Purpose

Remarks

TRON
TROFF

To trace the execution of program statements.

As an aid in debugging, the TRON statement (exe-
cuted in either direct or indirect mode) enables a
trace flag that prints each line number of the pro-
gram as it is executed. The numbers appear enclosed
in square brackets. The trace flag is disabled with
the TROFF statement (or when a NEW command
is executed). E

Microsoit BASIC Reference Manual

Example

TRON

Ok

LIST

10K=10

20 FORJ=1TO 2
30L=K + 10

40 PRINT J;K:L

50 K=K + 10

60 NEXT

70 END

Ok

RUN

[10][20){30)[40} 1 10 20
[50][60]{30][40] 2 20 30
{50}(60}(70]

Ok

TROFF
Ok

264 WAIT

Syntax

Purpose

Remarlf{‘sj

Important

100

WAIT <port number>,I{,J]

where I and J are integer expressions.

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read at
the port is exclusive OR’ed with the integer ex-
pression J, and then AND’ed with I. If the result is
zero, Microsoft BASIC loops back and reads the
data at the port again. If the result is nonzero, exe-
cution continues with the next statement. If J is
omitted, it is assumed to be zero.

It is possible to enter an infinite loop with the
WAIT statement, in which case it will be
necessary to manually restart the machine. To
avoid this, WAIT must have the specified value at

Example

Microsoft BASIC Commands and Statements

<port number> during some point in the program
execution,

100 WAIT 32,2

265 WHILE..WEND

Syntax

Purpose

Remarks

WHILE <expression>

[<'Ioop statements>]
WEND

To execute a series of statements in a loop as long
as a given condition is true.

If <expression> is not zero (i.e., true),
<loop statements> are executed until the WEND
statement is encountered. Microsoft BASIC then
returns to the WHILE statement and checks
<expression>. If it is still true, the process is
repeated. If it is not true, execution resumes with
the statement following the WEND statement.

WHILE/WEND loops may be nested to any level,
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a
“WHILE without WEND" error, and an un-
matched WEND statement causes a “WEND
without WHILE"” error.

101

W e h ribEmmmer

Microsoft BASIC Refcrence Manual

Example 90 'BUBBLE SORT ARRAY A$

100 FLIPS = 1 '"FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=0
120 FORI1=1TO J-1
130 IF AS(Hh>A%(1 + 1) THEN
SWAP AS(1),A$(1 + 1):FLIPS = 1
140 NEXT |
150 WEND
266 WIDTH
Syntax WIDTH [LPRINT Kinteger expression>
Purpose To set the printed line width in number of char-

acters for the terminal or line printer.

Remarks If the LPRINT option is omitted, the line width is
set at the terminal. If LPRINT is included, the line
width is set at the line printer.

<integer expression> must have a value in the
range 16 to 255. The default width is 79
characters.

If <integer expression> is 255, the line width is
3 “infinite”; that is, Microsoft BASIC never inserts
. a carriage return. However, the position of the cur-

sor or the print head, as given by the POS or LPOS

function, returns to zero after position 255,

Example 10 PRINT “ABCDEFGHIJ KLMNOPQRSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

102

Microsoit BASIC Commands and Statements

2.67 WRITE

Syntax
Purpose

Remarks

Example

WRITE [<list of expressions>]
To output data at the terminal.

If <list of expressions>> is omitted, a blank line is
output. If <list of expressions> is included, the
values of the expressions are output at the ter-
minal. The expressions in the list may be numeric
and/or string expressions. They must be separated
by commas.

When the printed items are output, each item is
separated from the last by a comma. Printed
strings are delimited by quotation marks. After
the last item in the list is printed, Microsoft
BASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same

syntax as the PRINT statement. (See Section
2.49.)

10 A=80:B =90:C$ = “THAT'S ALL"
20 WRITE A,B,CS
RUN
80, 90,"THAT’S ALL"
Ok

103

Microsoft BASIC Reference Manual

2.68 WRITE¥#

Syntax
Purpose

Remarks

Example

104

WRITE#<file number> <list of expressions>
To write data to a sequential file,

<file number> is the number under which the file
was OPENed in “O” mode (see “OPEN,"” Section
2.45). The expressions in the list are string or
numeric expressions. They must be separated by
comimas.

The difference between WRITE# and PRINTY is
that WRITE# inserts commas between the items
as they are written to disk and delimits strings
with quotation marks. Therefore, it is not neces-
sary for the user to put explicit delimiters in the
list. A carriage return/line feed sequence is in-
serted after the last item in the list is written to
disk.

Let A$="CAMERA" and B$ = “93604-1"

The statement

WRITE#1,A$,B%

writes the following image to disk:
“"CAMERA","93604-1"

A subsequent INPUT# statement, such as
INPUT#1,A3,B%

Vgguld input “CAMERA” to A8 and “93604-1"" to

Chapter 3

Microsoft
BASIC Functions

Introduction 107
3.1 ABS 107
3.2 ASC 108
33 ATN 108
34 CDBL 109
35 CHR$ 109
3.6 CINT 110
37 COS 110
3.8 CSNG 111
39 CVI,CVS,CVD 111
3.10 EOF 112
3.11 EXP 112
3.12 FIX 113
3.13 FRE 113
3.14 HEX$ 114
3.15 INKEY$S 114
3.16 INP 115
3.17 INPUT$ 115
3.18 INSTR 116
3.19 INT 116
3.20 LEFT$ 117

105

106

LEN 117

3.21
3.22 LOC 117

3.23 LOG 118
3.24 LPOS 118
3.25 MID$ 119
3.26 MKI$, MKS$, MKD$
3.27 OCT$ 120
3.28 PEEK 120
3.29 POS 121
3.30 RIGHT$ 121
3.31 RND 122
3.32 SGN 122
333 SIN 123

3.34 SPACE$ 123
335 SPC 124

336 SQR 124

3.37 STR$ 125
3.38 STRINGS 125
339 TAB 125

340 TAN 126

341 USR 126

342 VAL 127

343 VARPTR 128

119

O

Microsoft BASIC Functions

Microsoft BASIC intrinsic functions are described in this chapter.

The functions may be called from any program without further
definition.

Arguments to functions are always enclosed in parentheses. In the
syntaxes given for the functions in this chapter, the arguments
have been abbreviated as follows:

Xand Y Represent any numeric expressions.
Iand J Represent integer expressions.

X$ and Y8 Represent string expressions.

If a floating-point value is supplied where an integer is required,
Microsoft BASIC will round the fractional portion and use the
resulting integer.

Note

With Microsoft BASIC Interpreter, only integer and single
precision results are returned by functions. Double precision

functions are supported only by the Microsoft BASIC Com-
piler,

3.1 ABS
Syntax ABS(X)
Action Returns the absolute value of the expression X.
Example PRINT ABS(7 *(-5))
35
Ok

107

Microsoft BASIC Relerence Manual

3.2 ASC
Syntax

Action

Example

3.3 ATN
Syntax

Action

Example

108

ASC(X$)

Returns a numerical value that is the ASCII code
for the first character of the string X$. (See Appen-
dix C for ASCII codes.) If X$ is null, an “Illegal
function call’’ error is returned.

10 X$ = “TEST"
20 PRINT ASC(X$)
RUN

84
Ok

See the CHR$ function, Secf;ion 3.5, for details on
ASCII-to-string conversion,

ATN(X)

Returns the arctangent of X in radians. Result is
in the range -pi/2 to pi/2. The expression X may be
any numeric type, but the evaluation of ATN is
always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RUN
?3
1.24905
Ok

34 CDBL

Syntax
Action

Example

3.5 CHRS$

Syntax

Action

Exmﬁple

Microsoft BASIC Functions

CDBL(X)
Converts X to a double precision number.

10 A=45467
20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344
Ok

CHRS$(l)

Returns a string whose one character is ASCII
character I. (ASCII codes are listed in Appendix
C.) CHRS$ is commonly used to send a special char-
acter to the terminal. For instance, the BEL char-
acter (CHR$(7)) could be sent as a preface to an

error message, or a form feed (CHR$(12)) could be
sent to clear a terminal screen and return the cur-
sor to the home position.

PRINT CHR$(66)
B
Ok

See the ASC function, Section 3.2, for details on
ASCII-to-numeric conversion.

109

Microsoft BASIC Reference Manual

3.6 CINT
Syntax CINT(X)
Action Converts X to an integer by rounding the frac-

tional portion. If X is not in the range -32768 to
32767, an “Overflow’’ error occurs.

Example PRINT CINT(45.67)
46
Ok

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See also
the FIX and INT functions, both of which return
integers.

3.7 COS

Syntax COS(X)

Action Returns the cosine of X in radians. The calculation
. of COS(X) is performed in single precision.

Example 10 X=2+C0OS(.4)
20 PRINT X
RUN
1.84212
Ok

110

i

Microsoft BASIC Reference Manual

See also “MKIS, MKS$, MKDS$,” Section 3.26
and “Disk File Handling,” in the Microsoft
BASIC User's Guide.

3.10 EOF
Syntax EOF(<file number>)
Action Returns -1 (true) if the end of a sequential file has

been reached. Use EOF to test for end-of-file while
INPUTting, to avoid “Input past end” errors.

Example 10 OPEN “I”,1,“DATA"

20 C=0

30 IF EOF(1) THEN 100
40 INPUT #1,M(C)

50 C=C + 1:GOTO 30

3.11 EXP
Syntax ° EXP(X)
Action ‘- Returns e (base of natural logarithms) to the power

of X. X must be <=87.3365. If EXP overflows, the
“Overflow” error message is displayed, machine
infinity with the appropriate sign is supplied as
the result, and execution continues,

Example 10X=5
20 PRINT EXP(X-1)
RUN
54.5982
Ok

112

Microsoft BASIC Functions

3.12 FIX
Syntax FIX(X)
Action Returns the truncated integer part of X. FIX(X) is

equivalent to SGN(X)+*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

Examples PRINT FIX(58.75)
58
Ok

PRINT FIX(-58.75)
-58
Ok

3.13 FRE

Syntax FRE(0)
FRE("* ")

Action Arguments to FRE are dummy arguments. FRE

returns the number of bytes in memory not being
used by Microsoft BASIC.

FRE(* ") forces a garbage collection before return-
ing the number of free bytes. Be patient: garbage
collection may take 1 to 1% minutes.

Microsoft BASIC will not initiate garbage collec-
tion until all free memory has been used up. There-
fore, using FRE(" ") periodically will result in
shorter delays for each garbage collection.

Example PRINT FRE(0)
14542
Ok

113

Microsoft BASIC Reference Manual

3.14 HEXS$
Syntax HEX$(X)
Action Returns a string which represents the hexadecimal

value of the decimal argument. X is rounded to an
integer before HEX$(X) is evaluated.

Example 10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS” A$ “HEXADECIMAL"
RUN
? 32

32 DECIMAL 1S 20 HEXADECIMAL

Ok .
See the OCT$ function, Section 3.27, for details on
octal conversion.

3.15 INKEYS$

Syntax INKEY$

Action Returns either a one-character string containing a

u character read from the terminal or a null string if

no character is pending at the terminal. No char-
acters will be echoed. All characters are passed
through to the program except for Control-C,
which terminates the program. (With Microsoft
BASIC Compiler, Control-C is also passed through
to the program.)
1000 ‘TIMED INPUT SUBROUTINE

Example

114

1010 RESPONSE$ =" "

1020 FOR 1% =1 TO TIMELIMIT %

1030 A% = INKEYS : IF LEN(A$)=0 THEN 1060

1040 IF ASC(A$) = 13 THEN TIMEOUT% =0 : RETURN
1050 RESPONSES$ = RESPONSES$ + A$

1060 NEXT 1%

1070 TIMEOUT% =1 : RETURN

s

3.16 INP

Syntax

Action

Example

Microsoft BASIC Functions

INP(I)

Returns the byte read from port I. I must be in the
range 0 to 255. INP is the complementary function
to the OUT statement, Section 2.47.

100 A = INP{255)

3.17 INPUTS$

Syntax

Action

Example 1

Example 2

INPUTS(X[,[#]1Y]}

Returns a string of X characters, read from the ter-
minal or from file number Y. If the terminal is used
for input, no characters will be echoed. All control
characters are passed through except Control-C,
which is used to interrupt the execution of the IN-
PUTS$ function.

9 ‘LIST THE CONTENTS OF A SEQUENTIAL FILE
IN HEXADECIMAL

10 OPEN"I",1,“DATA”

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INPUTS(1,#1));

40 GOTO 20

50 PRINT

60 END

100 PRINT “TYPE P TO PROCEED OR S TO STOP"
110 X$ = INPUTS(1)

120 IF X$="P"” THEN 500

130 IF X$ =“S” THEN 700 ELSE 100

115

Microsoft BASIC Functions

3.20 LEFTS$
Syntax LEFT$(X$,1)
Action Returns a string comprised of the leftmost I char-

Example

321 LEN

Syntax

Action.

Example

3.22 LOC

Syntax

acters of X$. I must be in the range 0 to 255. If I is
greater than the number of characters in X$
(LEN{X$)), the entire string (X$) will be returned.
If I=0, the null string (length zero) is returned.

10 A$ = “BASIC”

20 BS = LEFT$(AS$,5)
30 PRINT B$
BASIC

Ok

Also see the MID$ and RIGHTS$ functions, Sec-
tions 3.25 and 3.30, respectively.

LEN(X$)

Returns the number of characters in X3$. Nonprint-
ing characters and blanks are counted.

10 X$ = “PORTLAND, OREGON"
20 PRINT LEN(X$)

16
Ok

LOC(<file number>)

where <file number> is the number under which
the file was QPENed.

117

Microsoft BASIC Reference Manual

Action With random disk files, LOC returns the record
number just read or written from a GET or pUT
statement. If the file was opened but no disk 1/O
has been performed yet, LOC returns a 0. With se-
quential files, LOC returns the number of sectors
(128-byte blocks) read from or written to the file
since it was OPENed.

Example 200 IF LLOC(1)>50 THEN STOP
3.23 LOG
' Syntax LOG(X)
Action Returns the natural logarithm of X, X must be
greater than zero.
Example PRINT LOG(45/7)
1.86075
Ok
3.24 LPOS
Syntax LPOS(X)
Action Returns the current position of the line printer

print head within the line printer’s buffer. Doeg
not necessarily give the physical position of the
print head. X is a dummy argument.

Example 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

118

Microsoft BASIC Functions

3.25 MIDS$
Syntax MID$(X$,I,Jp
Action Returns a string of length J characters from X3,

"~ . Example

beginning with the Ith character. I and J must be
in the range 1 to 255. If J is omitted or if there are
fewer than J characters to the right of the Ith
character, all rightmost characters beginning with
the Ith character are returned. If I is greater than
the number of characters in X$ (LEN(X$)), MID$
returns a null string.

LIST

10 A$="GOOD ”

20 B$ = “MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)

Ok

RUN

GOOD EVENING

Ok

Also see the LEFT$ and RIGHTS$ functions, Sec-
tions 3.20 and 3.30, respectively.

If I=0 is specified, the “Illegal function call”’ error
message will be returned.

3.26 - MKI$, MKS$, MKDS$

Syntax

Action

MKI$(<integer expression>)
MKS$(<single precision expression>)
MKDS$(<double precision expression>)

Convert numeric values to string values. Any
numeric value that is placed in a random file buffer
with an LSET or RSET statement must be con-
verted to a string. MKI$ converts an Integer to a
2-byte string. MKS$ converts a single precision
number to a 4-byte string. MKD$ converts a dou-
ble precision number to an 8-byte string.

119

Microsoft BASIC Reference Manual

Example

90 AMT =(K +T)

100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$ = MKS$(AMT)

120 LSET N$ = A$

130 PUT #1

Also see *'CVI, CVS, CVD,"” Section 3.9, and “Disk
File Handling,” in the Microsoft BASIC User’s
Guide.

3.27 OCT$

Syntax

Action

Example

OCTH(X)

Returns a string which represents the octal value
of the decimal argument. X is rounded to an inte-
ger before OCT$(X) is evaluated.

PRINT OCT$(24)
30
Ok

See the HEX$ function, Section 3.14, for details on
hexadecimal conversion.

3.28 PEEK

Syntax

Action

Remarks

120

PEEK(!)

Returns the byte read from the indicated memory
location (I).

The returned value is an integer in the range 0 to
2565. I must be in the range -32768 to 65535. (For
the interpretation of a negative value of I, see
“VARPTR,” Section 3.43.)

i

Example

3.29 POS

Syntax

Action

Example

Microsoft BASIC Functions

PEEK is the complementary function of the
POKE statement.

A = PEEK(&H5A00}

POS(I)

Returns the current cursor position. The leftmost
position is 1. X is a dummy argument.

iIF POS(X)>60 THEN PRINT CHR$(13)

Also see the LPOS function, Section 3.24.

3.30 RIGHTS$

Syntax

Action

Example

RIGHT$(X$,1)

Returns the rightmost I characters of string X8$. If
I is equal to the number of characters in X$
(LEN(X$)), RIGHTS returns X$. If I=0, the null
string {length zero) is returned.

10 A$ = “DISK BASIC"
20 PRINT RIGHT$(A3,5)
RUN

BASIC

Ok

Also see the LEFT$ and MID$ functions, Sections
3.20 and 3.25, respectively.

121

i I ¢ e i

Microsoft BASIC Reference Manual

3.31 RND

Syntax

Action

Example

Note

3.32 'SGN

Syntax

Action

Example

122

RND[(X)]

Returns a random number between 0 and 1. The
Same sequence of random numbers jg generated
each time the program is RUN unless the random
number generator is reseeded (see “RANDOM-
IZE,” Section 2.53). However, X<0 always
restarts the same sequence for any given X.

X>0 or X omitted generates the next random
number in the sequence. X=0 repeats the last
number generated.

10FORI=1TO 5
20 PRINT INT(RND «100);
30 NEXT
RUN

243031515
Ok

The values produced by the RND function may

vary with different implementationg of Microsoft
BASIC.

SGN(X)

If X>0, SGN(X) returns 1.
it X =0, SGN(X) returns 0.
If X<0, SGN(X) returns -1,

ON SGN(X)+ 2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is 0, and
300 if X is positive.

Microsoft BASIC Functions

3.33 SIN

Syntax SIN(X)

Action ‘Returns the sine of X in radians. SIN(X) is
calculated in single precision. COS(X)=SIN(X+
3.14159/2).

Example PRINT SIN(1.5)
997495
Ok

Also see the COS(X) function, Sectidn 3.7.

3.34 SPACES$

Syntax SPACES$(X)

Action Returns a string of spaces of length X. The expres-
sion X is rounded to an integer and must be in the
range 0 to 255.

Exampleé 10 FORI=1TOS5
20 X$ =SPACES$(l)
30 PRINT X$;l
40 NEXT |
RUN
1
2
3
4
5
Ok

Also see the SPC function, Section 3.35.

123

Microsoft BASIC Reference Manual

3.35 SPC

Syntax SPC(l)
Action Prints I blanks on the terminal. SPC may only be

used with PRINT and LPRINT statements. I
must be in the range 0 to 255. A*“:” is assumed to
follow the SPC(I) command.

Example PRINT “OVER" SPC(15) “THERE"
OVER THERE
Ok

Also see the SPACES$ function, Section 3.34.

3.36 SQR
Syntax SQR(X)
Action Returns the square root of X. X must be >=0.
Example 10 FOR X=10TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN
10 3.16228
15 3.87298
20 4.47214
25 5
Ok

124

Microsoft BASIC Functions

3.37 STRS$
Syntax STR$(X)
Action Returns a string representation of the value of X.

Example

5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the VAL function, Section 3.42.

3.38 STRINGS

Syntaxes

Action

Example

339 TAB

Syntax

Action

STRING$(1,4)
STRINGS(1,X3)

Returns a string of length I whose characters all
have ASCII code J or the first character of X$.

10 X$ = STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT" X$
RUN

----- ~MONTHLY REPORT-eeeee
Ok

TAB()

Spaces to position I on the terminal. If the current
print position is already beyond space I, TAB goes
to that position on the next line. Space 1 is the left-

125

R e T e e A < e 3

Microsoft BASIC Reference Manual

Example

340 TAN

Syntax

Action

Example

341 USR

Syntax

Action

126

most position, and the rightmost position is the
width minus one. I must be in the range 1 to 255.

TAB may only be used in PRINT and LPRINT
statements.

10 PRINT “NAME" TAB(25) “AMOUNT" : PRINT
20 READ AS$,B%

30 PRINT A$ TAB(25) B$

40 DATA “G. T. JONES”,“$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok

TAN(X)

Returns the tangent of X in radians. TANX) is
calculated in single precision. If TAN overflows,
the “Overflow” error message is displayed,
machine infinity with the appropriate sign is sup-
plied as the result, and execution continues.

10 Y = Q-TAN(X)/2

USR[<digit>}(X)

Calls the user’s assembly language subroutine
with the argument X. <digit> is in the range 0 to ¢
and corresponds to the digit supplied with the

e ——

Microsoft BASIC Functions

DEF USR statement for that routine, If <digit> is
omitted, USRO is assumed. See ““Assembly Lan-

guage Subroutines,” in the Microsoft BASIC
User’s Guide.

Example 40 B =T +SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

342 VAL
Syntax VAL(X$)
Action Returns the numerical value of string X$. The

VAL function also strips leading blanks, tabs, and
linefeeds from the argument string. For example,

VAL(“ __3:7)

returns -3.

Example 10 READ NAMES$,CITY$,STATES,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAMES TAB(25) “OUT OF STATE”
30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)} =90815
THEN PRINT NAMES TAB(25) “LONG BEACH"

See the STR$ function, Section 3.37, for details on
numeric-to-string conversion.

127

Microsoft BASIC Reference Manual

343 VARPTR

Syntax 1 VARPTR(<variable name>)
Syntax 2 VARPTR(#<file number>)
Action Syntax 1

Note

Example

128

Returns the address of the first byte of duta identi-
fied with <variable name>. A value must be
assigned to <variable name> prior to execution of
VARPTR. Otherwise an “Illegal function call”’
error results. Any type variable name may be used
(numeric, string, array). For string variables, the
address of the first byte of the string descriptor is
returned (see “BASIC Assembly Language Sub-
routines,” in the Microsoft BASIC User's Guide
for discussion of the string descriptor). The
address returned will be an integer in the range
~32768 to 32767, If a negative address is returned,
add it to 65536 to obtain the actual address,

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call of
the form VARPTR(A(0)) is usually specified when
passing an array, so that the lowest-addressed ele-
ment of the array is returned.

All simple variables should be assigned before call-
ing VARPTR for an array, because the addresses
of the arrays change whenever a new simple
variable is assigned.

Syntax 2

For sequential files, returns the starting address of
the disk I/O buffer assigned to <file number>. For
random files, returns the address of the FIELD
buffer assigned to <file number>.

100 X = USR(VARPTR(Y))

Appendices

Error Codes and Error Messages
Mathematical Functions 137
ASCII Character Codes 139
Microsoft BASIC Reserved Words

Oaowy

131

141

129

Appendix A

Error Codes
and Error Messages

Code
NF

SN

RG

oD

FC

Number

Message

NEXT without FOR

A variable in a NEXT statement does not

correspond to any previously executed, un-
matched FOR statement variable.

Syntax error

A line is encountered that contains some
incorrect sequence of characters (such as un-
matched parenthesis, misspelled command
or statement, incorrect punctuation, ete.).
Microsoft BASIC automatically enters edit
mode at the line that caused the error.

Return without GOSUB

A RETURN statement is encountered for

which there is no previous, unmatched
GOSUB statement.

Out of data

A READ statement is executed when there
are no DATA statements with unread data
remaining in the program.

Illegal function call

A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1. A negative or unreasonably large
subscript.

131

T
i

ov

OM

UL

BS

DD

132

10

Microsaoft BASIC Reference Manual

A negative or zero argument with LOG.
A negative argument to SQR.

A negative mantissa with a noninteger
exponent.

5. A call to a USR function for which the
starting address has not yet been given.

6. An improper argument to MIDS,
LEFT$, RIGHT$, INP, OUT, WAIT,
PEEK, POKE, TAB, SPC, STRINGS,
SPACES$, INSTR, or ON...GOTO.

Overflow

The result of a calculation is too large to be
represented in Microsoft BASIC number for-
mat. If underflow occurs, the result is zero
and execution continues without an error.

Out of memory

A program is too large, or has too many FOR
loops or GOSUBS, too many variables, or ex-
pressions that are too complicated.

Undefined line

A nonexistent line is referenced in a GOTO,
GOSUB, IF..THEN..ELSE, or DELETE
statement.

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of
the array or with the wrong number of
subscripts.

Redimensioned array

Two DIM statements are given for the same
array; or, a DIM statement is given for an ar-
ray after the default dimension of 10 has been
established for that array.

10

ID

™

0S

LS

ST

CN

11

12

13

14

15

16

17

Appendix A

Division by zero

A division by zero is encountered in an ex-
pression; or, the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is sup-
plied as the result of the involution, and exe-
cution continues,

Illegal direct

A statement that is illegal in direct mode is
entered as a direct mode command,

Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects a
numeric argument is given a string argument
or vice versa.

Out of string space

String variables have caused BASIC to ex-
ceed the amount of free memory remaining,
Microsoft BASIC will allocate string space
dynamically, until it runs out of memory.

String too long

An attempt is made to create a string more
than 255 characters long,

String formula too complex

A string expression is too long or too com-

plex. The expression should be broken into
smaller expressions.

Can't continue

An attempt is made to continue a program
that:

1. Has halted due to an error.

133

Attt PP R o P T ey st %oy

[O

Microsoft BASIC Reference Manual

UF

134

18

19

20

21

22

23

26

29

30

2. Has been modified during a break in ex-
ecution,

3. Does not exist.

Undefined user function

A USR function is called before the function
definition (DEF statement) is given.

No RESUME

An error handling routine is entered but con-
tains no RESUME statement.

RESUME without error

A RESUME statement is encountered before
an error handling routine is entered.

Unprintable error

An error message is not available for the
error condition which exists.

Missing operand

An expression contains an operator with no
operand following it.

Line buffer overflow

An attempt has been made to input a line
that has too many characters.

FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

WHILE without WEND

A WHILE statement does not have a match-
ing WEND.

WEND without WHILE

A WEND statement was encountered with-
out a matching WHILE.

“

Appendix A

Disk Errors

Number

50

b1

52

53

54

55

Message

Field overflow

A FIELD statement is attempting to allo-
cate more bytes than were specified for the
record length of a random file.

Internal error

An internal malfunction has occurred in
Microsoft BASIC. Report to Microsoft the
conditions under which the message ap-
peared.

Bad file number

A statement or command references a file
with a file number that is not OPEN or is out
of the range of file numbers specified at ini-
tialization.

File not found

A LOAD, KILL, or OPEN statement refer-
ences a file that does not exist on the current
disk,

Bad file mode

An attempt is made to use PUT, GET, or
LOF with a sequential file, to LOAD a ran-
dom file, or to execute an OPEN statement
with a file mode other than I, O, or R.

File already open

A sequential output mode OPEN statement
is issued for a file that is already open; or a
KILL statement is given for a file that is
open.

135

Microsoft BASIC Reference Manual

136

57

58

61

62

63

64

66

67

Disk I/0O error

An I/0 error occurred on a disk I/O operation.
It is a fatal error; i.e., the operating system
cannot recover from the error,

File already exists

The filename specified in a NAME statement

is identical to a filename already in use on the
disk.

Disk full

All disk storage space is in use.

Input past end

An INPUT statement is executed after all
the data in the file has been INPUT, or for a
null {empty) file.- To avoid this error, use the
EOF function to detect the end-of-file,

Bad record number

In a PUT or GET statement, the record
number is either greater than the maximum
allowed (32,767) or equal to zero.

Bad file name

An illegal form is used for the filename with a
LOAD, SAVE, KILL, or OPEN statement
(e.g., a filename with too many characters).

Direct statement in file

A direct statement is encountered while
LOADing an ASCII-format file. The LOAD
is terminated.

Too many files

An attempt is made to create a new file {us-
ing SAVE or OPEN) when all 255 directory
entries are full.

s, pe——

Appendix B

Mathematical Functions

Derived Functions

Functions that are not intrinsic to Microsoft BASIC may be
calculated as follows.

Function Microsoft BASIC Equivalent

SECANT SEC(X}=1/COS(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT{X)=1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(-X*X+1))

INVERSE COSINE = ARCCOS(X)=-ATN(X/SQR(-X*X+1))
+1.5708

INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)-1)»1.5708

INVERSE ARCCSC(X)=ATN(X/SQR(X *X-1))

COSECANT +(SGN(X)-1)%1.5708
INVERSE

COTANGENT ARCCOT(X)=ATN(X)+1.5708
HYPERBOLIC

SINE SINH(X)=(EXP(X)-EXP{-X))/2
HYPERBOLIC

COSINE COSH(X)=(EXP(X)+EXP(-X})/2
HYPERBOLIC TANH(X)=(EXP(X)-EXP{(-X))/

TANGENT (EXP(X)+EXP(-X))
HYPERBOLIC

SECANT SECH(X)=2/(EXP(X)+EXP(-X))
HYPERBOLIC

COSECANT CSCH(X)=2/(EXP(X)-EXP(-X))
HYPERBOLIC COTH(X)=(EXP(X}+EXP{(-X)}/

COTANGENT (EXP(X)-EXP(-X))

137

Microsoft BASIC Reference Manual

INVERSE
HYPERBOLIC
SINE

INVERSE
HYPERBOLIC
COSINE

INVERSE
HYPERBOLIC
TANGENT

INVERSE
HYPERBOLIC
SECANT

INVERSE
HYPERBOLIC
COSECANT

INVERSE
HYPERBOLIC
COTANGENT

138

ARCSINH(X}=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X»X-1))

ARCTANH(X)=LOG({1 +X)/(1-X))/2

ARCSECH(X)=LOG((SQR(-X*X+1)
+1)/X)

ARCCSCH(X)=LOG((SGN(X)*SQR
(XX +1)+1)/X)

ARCCOTH(X)=LOG({(X+1)/(X-1))/2

Appendix C
ASCII Character Codes

Dec Hex CHR Dec Hex CHR Dec Hex CHR
000 O00H NUL 043 2BH + 086 B6H V
O 001 O1H SOH 044 2CH , 087 57H W
002 02H STX 045 2DH - 088 BH8H X
003 03H ETX 046 2EH . 089 H9H Y
004 04H EOT 047 2FH / 090 5AH Z
005 05H ENQ 048 30H 0 091 B5BH [
006 06H ACK 049 31H 1 092 5CH \
007 07H BEL 050 32H 2 093 5DH]
008 O08H BS 051 33H 3 094 BEH A
009 O09H HT 052 34H 4 095 SFH __
010 OAH LF 053 35H 5 096 60H '
011 O0BH VT 054 36H 6 097 61H a
012 0CH FF 055 8TH 7 098 62H b
013 ODH CR 056 38H 8 099 63H ¢
014 OEH SO ‘ 057 39H 9 100 64H d
015 OFH SI 058 3AH : 101 65H e
016 10H DLE 059 3BH ; 102 66H f
017 11H DC1 060 38CH < 103 67H g
018 12H DC2 061 8DH = 104 68H h
019 13H DC3 062 3EH > 105 69H i
020 14H DC4 063 3FH ? 106 6AH j
- 021 15H NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
_ 023 #17H ETB 066 42H B 109 6DH m
: 024 18H CAN 067 43H C 110 6EH n
025 “19H EM 068 44H D 111 6FH o
; 026 1AH SUB 069 45H E 112 70H p
! 027 1BH ESCAPE 070 46H F 113 7i1H q
“ 028 1CH FS 071 47H G 114 72H r
029 1DH GS 072 48H H 115 78H s
/ 030 1EH RS 073 49H 1 116 74H t
; 031 1FH US 074 4AH J 117 7H u
13 032 20H SPACE 075 4BH K 118 76H v
] 033 21H 1 076 4CH L 119 77TH w
i 034 22H * 077 4DH M 120 78H x
1 035 23H # 078 4EH N 121 79H y
036 24H $ 079 4FH O 122 7AH 2z
’ 037 25H % 080 50H P 123 7BH &
038 26H & 081 61H Q 124 17CH
039 27H ° 082 62H R 125 7DH }
040 28H (083 53H S 126 17EH ..
041 29H) 084 54H T 127 7FH DEL
042 2AH * 085 55H U
0 Dec=decimal, Hex=hexadecimal (H), CHR==character, LF=Line Feed,

FF=Form Feed, CR=Carriage Return, DEL=Rubout
139

oo -

Appendix D

Microsoft BASIC
Reserved Words

The following is a list of reserved words used in Microsoft BASIC.

ABS
AND
ASC
ATN
AUTO
CALL
CDBL
CHAIN
CHRS$
CINT
CLEAR
CLOSE
COMMON
CONT
COSs
CSAVE
CSNG
CvD
Cvl

Cvs
DATA
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEF USR
DELETE
DIM
EDIT
ELSE
END
EQF
EQV

ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX

FN.
FOR
FRE
GET
GOSUB
HEXS$
IF

IMP
INKEY$
INP
INPUT
INPUT#
INPUTS
INSTR
INT
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOF

LOG
LPOS
LPRINT
LSET
MERGE
MID$
MKD$
MKI$
MKS$
MOD
NAME
NEW
NEXT
NOT
OCT$

ON
OPEN
OPTION
OR

ouT
PEEK
POKE
POS
PRINT
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RETURN

RIGHTS
RND
RSET
RUN

- SAVE

SGN

SIN
SPACES
SPC

SQR
STEP
STOP
STR$
STRING#$
SWAP
SYSTEM
TAB
TAN
THEN
TO
TROFF
TRON
USING
USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WRITE
WRITE#
XOR

141

Yoy o

Microsoft. BASIC

Reference Manual

Py 2

Microsoft Corporation

Index

ABS, 107

Addition, 16

ALL, 31, 37

Arctangent, 108

Array variables, 12, 37, 45

Arrays, 12, 35, 39, 51

ASC, 108

ASCII codes, 108, 139

ASCII format, 32, 73, 97

Assembly language subroutines,
30, 44, 79, 128

ATN, 108

AUTO, 6, 29

Boolean operations, 19

CALL, 30

Carriage return, 7, 64, 65,
102-104

Cassette tape, 35, 39

CDBL, 109

CHAIN, 31, 37

Character set, 6

CHRS, 109

CINT, 110

CLEAR, 34

CLOAD, 35

CLOAD®*, 35

CLOAD?, 35

CLOSE, 36

Command level, 5

COMMON, 31, 37

Concatenation, 21

Constants, 8

CONT, 39, 68

Control characters, 8

Control-A, 49

COS, 110

CSAVE, 39

CSAVE®, 39

CSNG, 111

CvD, 111
CVI, 111
CVS, 111

DATA, 41

DEF FN, 42
DEFDBL, 12, 43
DEFINT, 12, 43
DEFSNG, 12, 43
DEFSTR, 12, 43
DEF USR, 44
DELETE, 6, 32, 45
DIM, 45

Direct mode, 5, 62, 76
Division, 16

Double precision, 10, 43, 80, 109

EDIT, 6, 46

Edit mode, 8, 46

ELSE, 61

END, 36, 39, 50, 60 !
EOF, 112 !
ERASE, 51 ‘
ERL, 51

ERR, 51

ERROR, 52

Error codes, 23, 52-53, 131

Error handling, 52, 76

Error messages, 23, 131

Error trapping, 52, 95

Escape, 7, 47

EXP, 112

Exponentiation, 16, 17

Expressions, 16

FIELD, 54

FIX, 113 -
FOR.. NEXT, 56

FRE, 113

Functions, 21, 42, 107, 137

143

i

Index

GET, 54, 59
GOSUB, 59
GOTO, 60

HEXS, 114
Hexadecimal, 9, 114

IF...GOTO, 61

IF. THEN 20, 61
IF.. . THEN.. ELSE, 61
Indlrect mode, 5
INKEYS, 114

INP, 115

INPUT 53, 64, 67
INPUT# 65
INPUT$ 115
INSTR, 116

INT, 116

Integer. 110, 113, 116
Integer division, 16

KILL, 66

LEFTS, 117

LEN, 117

LET, 66

Line feed, 6, 64, 67, 103-104
LINE INPUT, 67

LINE INPUT¥, 68

Line numbers, 5-6, 30, 93
Line printer, 70, 71, 102, 118
Lines, 5

LIST, 6, 69

LLIST, 70

LOAD, 71, 97

LOC, 117

LOG, 118

Logical operators, 19
Loops, 57, 101

LPOS, 102, 118

144

LPRINT, 71, 102
LPRINT USING, 71
LSET, 72

MERGE, 31, 73
MIDS$, 73, 119

MEKDS$, 119

MKIS$, 119

MKSS$, 119

MOD operator, 17
Modulus arithmetic, 17
Multiplication, 16

NAME, 74

Negation, 16

NEW, 75

NULL, 75

Numeric constants, 8
Numeric variables, 11

OCTS$, 120

Octal, 10, 120

ON ERROR GOTO, 76
ON...GOSUB, 76
ON...GOTO, 76
OPEN 36, 54, 77
Operators. 15, 18-22
OPTION BASE 78
OUT, 79

Overﬂow 17, 112, 126
Overlay, 32

Paper tape, 75
PEEK, 79, 120
POKE, 79, 121
POS, 102, 121
PRINT, 80

PRINT USING, 82
PRINTY#, 86
PRINT# USING, 86
Protected files, 97
PUT, 54, 89

Random files, 64, 59, 66, 72, 77,

89, 118
Random numbers, 90, 122
RANDOMIZE, 90, 122
READ, 91, 94
Relational operators, 18
REM, 31, 92
RENUM, 32, 52, 93
Reserved words, 141
RESTORE, 94
RESUME, 95
RETURN, 60
RIGHTS, 121
RND, 90, 122
RSET, 72
Rubout, 7, 21, 47
RUN, 96

SAVE, 171, 97

Sequential files, 65, 66, 68, 77,

86, 104, 118
SGN, 122
SIN, 123

Singte precision, 10, 43, 80, 110
Space requirements for variables,

13
SPACES, 123
SPC, 124
SQR, 124
STOP, 39, 50, 60, 98
STRS, 125 _
String constants, 8

String functions, 111, 114-117,
119, 120, 121, 123, 125, 127

String operators, 21
String space, 34

String variables, 11, 43, 67-68

STRINGS, 125
Subroutines, 30, 59
Subscripts, 12, 45, 78
Subtraction, 16
SWAP, 99

Index

TAB, 125 !
Tab, 7, 8 :
TAN, 126

TROFF, 99

TRON, 99

USR, 44, 126

VAL, 127
Variables, 11
VARPTR, 128

WAIT, 100
WEND, 101 :
WHILE, 101
WIDTH, 102

WIDTH LPRINT, 102
WRITE, 103
WRITE#, 104

145

