B Ty o A ey ——

Microsoft BASIC Reference Manual

38

The standard form of the COMMON statement is
referred to as blank COMMON. Microsoft FOR-
TRAN Compiler-style named COMMON areas are
also supported; however, the variables are not

preserved across CHAINs. The syntax for named
COMMON is:

COMMON /<name>/ <list of variables>

where <name> is comprised of 1 to 6 alphanumeric
characters starting with a letter. This is useful for
communicating with Microsoft FORTRAN Com-
piler and assembly language routines without hav-
ing to explicitly pass parameters in the CALL
statement,

The blank COMMON size and order of variables
must be the same in the CHAIN ing and CHAINed
programs. With Microsoft BASIC Compiler, the
best way to insure this is to place all blank COM-
MON declarations in a single include file and use
the $INCLUDE statement in each program.

For example:

MENU.BAS
10 SINCLUDE COMDEF

1000 CHAIN “PROG1"

PROG1.BAS
10 $INCLUDE COMDEF

2000 CHAIN “MENU"

COMDEF.BAS
100 DIM A(100),B$(200)
110 COMMON 1,J,K,AQ
120 COMMON A$,B30,X,Y.Z

Microsoft BASIC Commands and Statements

28 CONT

Syntax CONT

Purpose To continue program execution after a Control-C
has been typed or a STOP or END statement has
been executed.

Remarks Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (**?"" or prompt
string).

CONT is usually used in conjuhction with STOP
for debugging. When execution is stopped, inter-
mediate values may be examined and changed us-
ing direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO,
which resumes execution at a specified line
number. CONT may be used to continue éxecution
after an error has occurred.

CONT is invalid if the program has been edited
during the break.

Exap:ple See “STOP,” Section 2.61.

29 CSAVE

Syntax CSAVE <string expression>
CSAVE* <array variable name>

Purpose To save the program or an array currently in
memory on cassette tape.

39

|

Microsoft BASIC Reference Manual

Remarks

Note

Example

40

Each program or array saved on tape is identified
by a filename. When the command CSAVE
<string expression> is executed, Microsoft BASIC
saves the program currently in memory on tape and
uses the first character in <string expression> as
the filename. <string expression> may be more
than one character, but only the first character is
used for the filename.

When the command CSAVE * <array variable name>
is executed, Microsoft BASIC saves the specified
array on tape. The array must be a numeric array.
The elements of a multidimensional array are saved
with the leftmost subscript changing fastest. For
example, when the 2-dimensional array specified
by DIM A(2,2) is saved (see “DIM,"” Section 2.15),
the array elements are saved in this order:

CSAVE may be used as a program statement or as

a direct mode command.

Before a CSAVE or CSAVE* is executed, make
sure the cassette recorder is properly connected
and in the record mode.

See also “CLOAD,’”’ Section 2.5.

CSAVE and CLOAD are not included in all imple-
mentations of Microsoft BASIC.

CSAVE “TIMER"

Saves the program currently in memory on’ cas-
sette under filename “TIMER’".

Microsoft BASIC Commands and Statements

210 DATA

Syntax

Purpose

Remarks

Example

DATA <list of constants>

To store the numeric and string constants that are
accessed by the program’s READ statement(s).
(See “READ,"” Section 2.54.)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA state-
ment may contain as many constants as will fit on
a line (separated by commas). Any number of
DATA statements may be used in a program.
READ statements access DATA statements in
order (by line number). The data contained therein
may be thought of as one continuous list of items,
regardless of how many items are on a line or
where the lines are placed in the program.

<list of constants> may contain numeric con-
stants in any format, i.e., fixed-point, . floating-
point, or integer. (No numeric expressions are
allowed in the list.) String constants in DATA
statements must be surrounded by double quota-
tion marks only if they contain commas, colons, or
significant leading or trailing spaces. Otherwise,

- quotation marks are not needed.

The variable type (numeric or string) given in the
READ statement must agree with the correspond-
ing constant in the DATA statement.

DATA statements may be reread from the begin-
ning by use of the RESTORE statement (Section
2.57).

See “READ,"” Section 2.54.

41

Microsoft BASIC Reference Manual

211 DEF FN

Syntax

Purpose

Remarks

DEF FN<name>[(<parameter list>)) =
<function definition>

To define and name a function that is written by
the user.

<name> must be a legal variable name. This name,
preceded by FN, becomes the name of the func-
tion.

<parameter list> is comprised of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

<function definition> is an expression that per-
forms the operation of the function. It is limited to
one line. Variable names that appear in this ex-
pression serve only to define the function; they do
not affect program variables that have the same
name. A variable name used in a function defini-
tion may or may not appear in the parameter list.
If it does, the value of the parameter is supplied
when the function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent, on a
one-to-one basis, the argument variables or values
that will be given in the function call.

This statement may define either numeric or string
functions. If a type is specified in the function
name, the value of the expression is forced to that
type before it is returned to the calling statement.
If a type is specified in the function name and the
argument type does not match, a “T'ype mismatch”
error occurs,

Example

Microsoft BASIC Commands and Statements

A DEF FN statement must be executed before the
function it defines may be called. If a function is
called before it has been defined, an ‘“Undefined
user function” error occurs. DEF FN is illegal in
the direct mode.

410 DEF FNAB(X,Y) = XA3/Y*2
420 T = FNAB(,J)

Line 410 defines the function FNAB. The function
is called in line 420. '

212 DEFINT/SNG/DBL/STR

Syntax

Purpose

Remurks

DEF<type> <range(s) of letters>

where <type> is INT, SNG, DBL, or STR

To declare variable types as integer, single preci-
ston, double precision, or string.

Any variable names beginning with the letter(s)
specified in <range of letters> will be considered
the type of variable specified in the <type> portion
of the statement. However, a type declaration
character always takes precedence over a DEF-
type statement. (See “Variable Names and Declar-
ation Characters,” Section 1.6.1.)

If no type declaration statements are encountered,
Microsoft BASIC assumes all variables without
declaration characters are single precision vari-
ables.

Microgoft BASIC Reference Manual

Examples

10 DEFDBL L-P All variables beginning with the
letters L, M, N, O, and P will be
double precision variables,

10 DEFSTR A All variables beginning with the
letter A will be string variables.

10 DEFINT i-N, All variables beginning with the
W-2 letters I, J, K, L, M, N, W X, Y,
Z will be integer variables,

213 DEF USR

Syntax

Purpose

Remarks

Example

DEF USR[<digit>) = <integer expression>

To specify the starting address of an assembly lan-
Buage subroutine.

<digit> may be any digit from 0 to 9. The digit cor-
responds to the number of the USR routine whose
address is being specified. If <digit> is omitted,
DEF USRO is assumed. The value of <integer ex-
pression> is the starting address of the USR
routine. See “Assembly Language Subroutines,”’
in the Microsoft BASIC User s Guide.

Any number of DEF USR statements may appear
in a program to redefine subroutine starting ad-
dresses, thus allowing access to as many subrou-
tines as necessary.

200 DEF USRO = 24000
210 X = USRO(Y*2/2.89)

Microsoft BASIC Commands and Statements

214 DELETE

Syntax
Purpose

Remarks

Examples

215 DIM

Syntax

Purpose

Re;narks

DELETE [<line number>)[-<line number>]
To delete program lines.

Microsoft BASIC always returns to command
level after a DELETE is executed. If <line number>
does not exist, an ““Illegal function call”’ error occurs,

DELETE 40 Deletes line 40.

DELETE 40-100 Deletes lines 40 through 100,
inclusive.

DELETE -40 Deletes all lines up to and

including line 40.

DIM <list of subscripted variables>

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of the array’s sub-
script(s) is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
“Subscript out of range” error occurs. The mini-
mum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

45

Microsoft BASIC Reference Manual

Example 10 DIM A(20)
20 FOR I=0TO 20
30 READ A(l)
40 NEXT |
2.16 EDIT
Syntax EDIT <line number>
- Purpose To enter edit mode at the specified.line.
Remarks In edit mode, it is possible to edit portions of a line

without retyping the entire line, Upon entering
edit mode, BASIC types the line number of the
line to be edited, then it types a space and waits for
an edit mode subcommand. '

Edit Mode Subcommands

Edit mode subcommands are used to move the cursor or to insert,
delete, replace, or search for text within a line, The subcommands
are not echoed. However, most of the edit mode subcommands
may be ‘preceded by an integer which causes the command to be
executed that number of times. When an integer is not specified, it
is assumed to be 1,

Edit mode subcommands may be categorized according to the
following functions:

Moving the cursor
Inserting text
Deleting text
Finding text
Replacing text

A o

46

Microsoft BASIC Commands and Statements

6. Ending and restarting edit mode
1. Entering edit mode from a syntax error

Note

In the descriptions that follow, <ch> represents any character,
<text> represents a string of characters of arbitrary length, [i]
represents an optional integer (the default is 1), and repre-
sents the Escape (or Altmode) key.

1. Moving the Cursor

Space bar Use the space bar to move the cursor to the
right. [i]Space bar moves the cursor i spaces
to the right. Characters are printed as you
space over them.

Rubout In edit mode, [i{JRubout moves the cursor i
spaces to the left (backspaces). Characters
are printed as you backspace over them.

2. Inserting Text

I I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
3 on the terminal. To terminate insertion, press
Escape. If a <carriage return> is typed dur-
ing an Insert command, the effect is the same
as pressing Escape and then <carriage return>.
During an Insert command, the Rubout,
Delete, or Underscore key on the terminal
may be used to delete characters to the left of
the cursor. Rubout will print out the char-
acters as you backspace over them. Delete
and Underscore will print an Underscore for
each character that you backspace over. If an
attempt is made to insert a character that
will make the line longer than 255 characters,
a bell (Control-G) sounds and the character is
not printed.

47

Microsoft BASIC Reference Manual

X

The X subcommand extends the line. X
moves the cursor to the end of the line, enters
insert mode, and allows insertion of text as if
an Insert command had been given. When .
you are finished extending the line, press
Escape or carriage return.

3. Deleting Text

D

(i]D deletes i characters to the right of the
cursor. The deleted characters are echoed be-
tween backslashes, and the cursor is posi-
tioned to the right of the last character
deleted. If there are fewer than i characters to
the right of the cursor, iD deletes the re-
mainder of the line.

H deletes all characters to the right of the
cursor and then automatically enters insert
mode. H is useful for extending a line or
replacing statements at the end of a line.

4. Finding Text

S

The subcommand [i}S<ch> searches for the
ith occurrence of <ch> and positions the cur-
sor before it. The character at the current cur-
sor position is not included in the search. If
<ch> is not found, the cursor stops at the end
of the line. All characters passed over during
the search are printed.

The subcommand [i]JK<ch> is similar to
[(]S<ch>, except all the characters passed
over in the search are deleted. The cursor is
positioned before <ch>, and the deleted
characters are enclosed in backslashes.

5. Replacing Text

C

The subcommand C<ch> changes the next
character to <ch>. If you wish to change the
next i characters, use the subcommand iC,
followed by as many characters as are
specified by i. After the ith new character is
typed, change mode is exited and you will
return to edit mode.

Microsoft BASIC Commands and Statements

6. Ending and Restarting Edit. Mode

<cr>

Control-A

Typing a <carriage return> prints the re-
mainder of the line, saves the changes you
made, and exits edit mode.

The E subcommand has the same effect as
<carriage return>, except the remainder of
the line is not printed.

The Q subcommand returns to Microsoft
BASIC command level, without saving any
of the changes that were made to the line in
edit mode.

The L subcommand lists the remainder of the
line {saving any changes made so far) and
repositions the cursor at the beginning of the
line, still in edit mode. L is usually used to list
the line when you first enter edit mode.

The A subcommand lets you begin editing a
line over again. It restores the original line
and repositions the cursor at the beginning.

To enter edit mode on the line you are currently
typing, type Control-A. Microsoft BASIC
responds with a <carriage return>, an excla-
mation point (!), and a space. The cursor will
be positioned at the first character in the line,
Proceed by typing an edit mode subcommand.

Remember, if you have just entered a line
and wish to go back and edit it, the command
“EDIT.” will enter edit mode at the current
line. (The line number symbol *." always
refers to the current line.)

If an unrecognizable command or illegal char-
acter is input to Microsoft BASIC while in
edit mode, BASIC sends a Control-G (bell) to
the terminal and the command or character is
ignored.

49

Microsoft BASIC Reference Manual

7. Entering Edit Mode from a Syntax Error

217 END

Syntax

Purpose

Remarks

Example

50

When a syntax error is encountered during
execution of a program, Microsoft BASIC
automatically enters edit mode at the line
that caused the error. For example:

10 K =2(4)

RUN

?Syntax error in 10
10

When you finish editing the line and press
<carriage return> (or the E subcommand),
Microsoft BASIC reinserts the line. This
causes all variable values to be lost. To
preserve the variable values for examination,
first exit edit mode with the Q subcommand.
Microsoft BASIC will return to command
level, and all variable values will be preserved.

END

To terminate program execution, close all files,
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a ‘‘Break in line
nnnnn’’ message to be printed. An END state-
ment at the end of a program is optional.
Microsoft BASIC always returns to command
level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

L T
e e o

Microsoft BASIC Commands and Statements

218 ERASE

Syntax ERASE <list of array variables>

Purpose To eliminate arrays from a program,

Remarks Arrays may be redimensioned after they are
ERASEJ, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a “Redimensioned array'’ error
occurs.

Microsoft BASIC Compiler - does not support
ERASE.
Example

450 ERASE A,B
460 DIM B(99)

219 ERR and ERL Variables

When an error handling routine is entered, the
variable ERR contains the error code for the error
and the variable ERL contains the line number of
the line in which the error was detected. The ERR
and ERL variables are usually used in IF.. THEN
statements to direct program flow in the error
handling routine.

If the statement that caused the error was a direct
mode statement, ERL will contain 65535. To test
whether an error occurred in a direct statement,
use [F 65535=ERL THEN ... Otherwise, use

51

Microsoft BASIC Reference Manual

62

IF ERR = error code THEN ...
IF ERL = fine number THEN ...

If the line number is not on the right side of the rela-
tional operator, it cannot be renumbered with
RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement. Micro-
soft BASIC error codes are listed in Appendix A,

220 ERROR
- Syntax ERROR <integer expression>
Purpose To simulate the occurrence of a BASIC error, or to
allow error codes to be defined by the user.
Remarks The value of <integer expression> must be é’reat;er

than 0 and less than 255, If the value of <integer
expression> equals an error code already in use by
BASIC {see Appendix A), the ERROR statement
will simulate the occurrence of that error and the
corresponding error message will be printed. (See
Example 1.)

To define your own error code, use a value that is
greater than any used by MS-BASIC error codes.
{It is preferable to use the highest available values,
80 compatibility may be maintained when more
error codes are added to MS-BASIC.) This user-
defined error code may then be conveniently handled
in an error handling routine. (See Example 2.)

If an ERROR statement specifies a code for which
NO error message has been defined, MS-BASIC
responds with the “Unprintable error” error
message. Execution of an ERROR statement for
which there is no error handling routine causes an
error message to be printed and execution to halt,

Example 1

Example 2

Microsoft BASIC Commands and Statements

LIST

10S=10

20T=5

30 ERROR S +T

40 END

Ok

RUN

String too long in line 30

Or, in direct mode:

Ok

ERROR 15 (You type this line.)
String too long (BASIC types this line.)
Ok

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET".:B
130 IF B>5000 THEN ERROR 210

400 IF ERR =210 THEN PRINT “HOUSE LIMIT IS
$5000"
410 IF ERL = 130 THEN RESUME 120

53

AN

Microsoft BASIC Reference Manual

221 FIELD

Syntax

Purpose

Remarks

Note

FIELD [#]<file number> <field width> AS
<string variable>...

To allocate space for variables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

<file number> is the number under which the file
was OPENed, <field width> is the number of char-
acters to be allocated to <string variable>. For
example,

FIELD 1,20 AS N$,10 AS iD$,40 AS ADD$

allocates the first 20 positions (bytes) in the ran-
dom file buffer to the string variable N$, the next
10 positions to ID$, and the next 40 positions to
ADDS. FIELD does not place any data in the ran-
dom file buffer. (See “LSET and RSET,” Section
2.37, and “GET,” Section 2.23.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed. Other-
wise, a “Field overflow'’ error occurs. {The default
record length is 128 bytes.)

Any number of FIELD statements may be exe-
cuted for the same file. All FIELD statements
that have been executed will remain in effect at the
same time.

Do not use a FIELDed variable name in an IN-
PUT or LET statement. Once a variable name is
FIELDed, it points to the correct place in the ran-

Example 1

Example 2

Example 3

Microsoft BASIC Commands and Statements

dom file buffer. If a subsequent INPUT or LET
statement with that variable name is executed, the
variable's pointer is moved to string space.

FIELD 1,20 AS N$,10 AS ID$,40 AS ADD$

Allocates the first 20 positions (bytes) in the ran-
dom file buffer to the string variable N§, the next
10 positions to ID$, and the next 40 positions to
ADDS. FIELD does NOT place any data in the
random file buffer. {See also “GET,"” Section 2.23,
and “LSET and RSET,” Section 2.37.)

10 OPEN “R,”#1,"A:PHONELST"” 35

15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAMES,10 AS PHONENBR$
25 GET #1

30 TOTAL = CVI(RECN BR)$

35 FOR I=2 TO TOTAL

40 GET #1, |

45 PRINT NAMES, PHONENBRS$

50 NEXT |

Hustrates a multiple defined FIELD statement.
In statement 15, the 35-byte field is defined for the
first record to keep track of the number of records
in the file. In the next loop of statements (35-50),
statement 20 defines the field for individual names

" and phone numbers.

10 FOR LOOP% =0TO 7

20 FIELD #1,(LOOP% *16) AS OFFSETS,16 AS
A$(LOOP%)

30 NEXT LOOP%

Shows the construction of a FIELD statement us-

Ing an array of elements of equal size. The result is
equivalent to the single declaration:

FIELD#1,16 AS A$(0),16 AS A$(1),...,16 AS A$(6),16
AS A3(7)

b5

Microsofi BASIC Reference Manual

Example 4

10 DIM SIZE% (NUMB%): REM ARRAY OF FIELD
SIZES

20 FOR LOOP% =0 TO NUMB%:READ SIZE%
(LOOP%): NEXT LLOOP%

30 DATA 9,10,12,21,41

120 DIM A$(NUMB%): REM ARRAY OF FIELDED
VARIABLES

130 OFFSET% =0

140 FOR LOOP% =0 TO NUMB%

150 FIELD #1, OFFSET% AS OFFSETS$, SIZE%
(LOOP%) AS A$(LOOP%)

160 OFFSET% = OFFSET % + SIZE%(LOOP%)
170 NEXT LOOP%

Creates a field in the same manner as Example 3.
However, the element size varies with each ele-
ment. The equivalent declaration is:

FIELD #1,SIZE%(0) AS A3$(0),SIZE%(1) AS A$(1),. ..
SIZE%(NUMB %) AS AS(NUMB%)

222 FOR..NEXT

Purpose

Remarks

FOR <variable>=x TO y [STEP z]

NEXT [<variable>][,<variable>..,]

where X, y, and z are numeric expressions.

To allow a series of instructions to be performed in
a loop a given number of times.

<variable> is used as a counter. The first numeric
expression (x) is the initial value of the counter.
The second numeric expression (y} is the final
value of the counter. The program lines following

Microsoft BASIC Commands and Statements

the FOR statement are executed until the NEXT
statement is encountered. Then the counter is ad-
justed by the amount specified by STEP. A check
is performed to see if the value of the counter is
now greater than the final value (y). If it is not
greater, Microsoft BASIC branches back to the
statement after the FOR statement and the proc-
ess is repeated. If it is greater, execution continues
with the statement following the NEXT state-
ment. This is a FOR..NEXT loop.

If STEP is not specified, the increment is assumed
to be one. If STEP is negative, the final value of
the counter is set to be less than the initial value.
The counter is decreased each time through the

loop. The loop is executed unti] the counter is less
than the final value.

The counter must be an integer or single precision
numeric constant. If a double precision numeric

constant is used, a “Type mismatch” error will
result. .

The body of the loop is skipped if the initial value
of the loop times the sign of the STEP exceeds the
final value times the sign of the STEP.,

Nested Loops

FOR..NEXT loops may be nested: that is, a
FOR...NEXT loop may be placed within the con-
text of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable
hame as its counter. The NEXT statement for the
inside loop must appear before that for the outside
loop. If nested loops have the same end point, a
single NEXT statement may be used for all of
them.

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its corresponding:
FOR statement, a “NEXT without FOR"” error
message is issued and execution is terminated.

57

Microsoft BASIC Reference Manual

Example 1 10K=10
20 FORI=1TO K STEP 2
30 PRINT |;
40 K=K+ 10
50 PRINT K
60 NEXT
RUN

20

30

40

50

60

gmﬂmm-&

- Example 2 10J=0

20 FORI=1TO J
n 30 PRINT I

40 NEXT |

In this example, the loop does not execute because
the initial value of the loop exceeds the final value.

Example 3 101=5
20 FORI=1TO I+5
30 PRINT I;
40 NEXT
RUN
. 12 3 456 7 89 10
Ok

In this example, the loop executes ten times. The
final value for the loop variable is always set
before the initial value is set.

Note Previous versions of Microsoft BASIC set the ini-
tial value of the loop variable before setting the
final value; i.e., the above loop would have exe-
cuted six times.

Microsoft BASIC Commands and Statements

223 GET

Syntax GET [#]<file number>[<record number>]

Purpose To read a record from a random disk file into a ran-
dom buffer.

Remarks <file number> is the number under which the file

was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into the

buffer. The largest possible record number . is
32767.

Example See “Disk File Handling,” in "the Microsoft

BASIC User’s Guide.

Note After a GET statement has been executed, IN-
PUT# and LINE INPUT# may be executed to
read characters from the random file buffer,

2.24 GOSUB..RETURN

Syntax_“_ GOSUB <line number>

RETURN
Purpose To branch to and return from a subroutine.
Remarks <line number> is the first line of the subroutine.

A subroutine may be called any number of times in
a program. A subroutine also may be called from
within another subroutine. Such nesting of sub-
routines is limited only by available memory.

69

*

Microsoft BASIC Reference Manual

Example

The RETURN statement(s) in a subroutine cause
Microsoft BASIC to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at differ-
ent points in the subroutine. Subroutines may
appear anywhere in the program, but it is recom-
mended that the subroutine be readily distinguish-
able from the main program. To prevent inadvertent
entry into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program
control around the subroutine.

10 GOSUB 40

20 PRINT “BACK FROM SUBROUTINE”
30 END

40 PRINT “SUBROUTINE":
50 PRINT * IN™;

60 PRINT “ PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

225 GOTO

5
Syntax

Purpose

Remarks

GOTO <line number>

To branch unconditionally out of the normal pro-
gram sequence to a specified line number.

If <line number> is an executable statement, that
statement and those following are executed. If it is
a nonexecutable statement, execution proceeds at
the first executable statement encountered after
<line number>.

Exaniple

Microsoft BASIC Commands and Statements

LIST

10 READ R

20 PRINT “R =";R,
30 A=3.14-R*2

40 PRINT “AREA ="A

50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R=5 AREA = 785
R=7 AREA = 153.86

R =12 AREA
?70ut of data in 10
Ok

226 IF..THENL..ELSE] and IF..GOTO

Syntax 1

Syntax 2

Purpose
o
Remarks

IF <expression> THEN {<statement(s)>|
<line number>} [ELSE {<statement(s)>|
<line number>}]

IF <expression> GOTO <line number>
[ELSE {<statement(s)>|<line number>}]

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may
be followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the result of
<expression> is zero, the THEN or GOTO clause
is ignored and the ELSE clause, if present, is exe-
cuted. Execution continues with the next execut-
able statement. A comma is allowed before THEN.

Nesting of IF Statements

IF..THEN...ELSE statements may be nested.
Nesting is limited only by the length of the line.

61

Microsoft BASIC Reference Manual

Note

Example 1

Example 2

62

For example,

IF X>Y THEN PRINT “GREATER” ELSE IF Y>X
THEN PRINT “LESS THAN" ELSE PRINT “EQUAL"

is a legal statement. If the statement does not con-
tain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example,

IF A=B THEN IF B=C THEN PRINT “A=C" ELSE
PRINT “A<>C”

will not print “A<>C’’ when A<>B.

If an IF..THEN statement is followed by a line
number in direct mode, an “Undefined line"” error
results, unless a statement with the specified line

number had previously been entered in indirect
mode.

When using IF to test equality for a value that is
the result of a floating-point computation, remem-
ber that the internal representation of the value
may not be exact. Therefore, the test should be
against the range over which the accuracy of the
value may vary. For example, to test a computed
variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of Ais 1.0 witha
relative error of less than 1.0E-é6.

200 IF | THEN GET#1,|

This statement GETSs record number Iif I is not
zero,

100 IF(}<20)*(1>10) THEN DB = 1979-1:GOTO 300
110 PRINT “OUT OF RANGE"

Microsoft BASIC Commands and Statements

In this example, a test determines if I is greater
than 10 and less than 20. If I is in this range, DB is
calculated and execution branches to line 300. If I

is not in this range, execution continues with line
110.

Example 3 210 IF IOFLAG "l;HEN PRINT A$ ELSE LPRINT A%
This statement causes printed output to go either
to the terminal or the line printer, depending on
the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the line printer; otherwise,
output goes to the terminal.

2.27 INPUT

Syntax INPUT[] [<*prompt string™>;}<list of variables>

Purpose To allow input from the terminal during program
execution,

Remarks When an INPUT statement is encountered, pro-

gram execution pauses and a question mark is
printed to indicate the program is waiting for data.
If <“prompt string’”> is included, the string is
printed before the question mark. The required
data is then entered at the terminal,

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT “ENTER
BIRTHDATE"”,B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed to input data does
not echo a carriage return/line feed sequence.

o

re———— TG

Microsoft BASIC Reference Manual

Examples

The data that is entered ig assigned to the vari-
able(s) given in <variable list>. The number of
data items supplied must be the same as the
number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted vari-
ables). The type of each data jtem that is input
must agree with the type specified by the variable
name. (Strings input to an INPUT statement need
not be surrounded by quotation marks.)

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric in-
stead of string, etc.) causes the message ‘““?Redo
from start” to be printed. No assignment of input
values is made until an acceptable response is
given. '

10 INPUT X

20 PRINT X “SQUARED IS X2

30 END

RUN

? 5 (The 5 was typed in by the
user in response to the ques-
tion mark.)

5 SQUARED IS 25

Ok

LIST

10 Pl=3.14

20 INPUT “WHAT IS THE RADIUS";R

30 A=PI+R"2

40 PRINT “THE AREA OF THE CIRCLE? IS"™A
50 PRINT

60 GOTO 20

Ok

" RUN

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

Microsoft BASIC Commands and Statements

228 INPUT#

Remarks

INPUT #<file number>,<variable list>

To read data items from a sequential disk file and
assign them to program variables,

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must match
the type specified by the variable name.) With
INPUT#, no question mark is printed, as with
INPUT.

The data items in the file should appear just as
they would if data were being typed in response to
an INPUT statement. With numeric values, lead-
ing spaces, carriage returns, and line feeds are ig-
nored. The first character encountered that isnota
Space, carriage return, or line feed is assumed to be
the start of a number. The number terminates on a
space, carriage return, line feed, or comma.

If Microsoft BASIC is scanning the sequential
data file for a string item, leading spaces, carriage
returns, and line feeds are also ignored. The first
character encountered that is not a space, carriage
return, or line feed is assumed to be the start of a
string item. If this first character is a quotation
mark (“), the string item will consist of all char-
acters read between the first quotation mark and
the second. Thus, a quoted string may not contain
a quotation mark as a character. If the first
character of the string is not a quotation mark, the
string is an unquoted string, and will terminate on
4 comma, carriage return, or line feed (or after 255
characters have been read). If end-of-file is reached
when a numeric or string item is being INPUT, the
item is terminated,

See ‘““‘Disk File Handling,” in the -Microsoft
BASIC User’s Guide.

65

Microsoft BASIC Reference Manual

229 KILL
Syntax KILL <filename>
Purpose To delete a file from disk.
. Remarks If a KILL statement is given for a file that is cur-

rently OPEN, a “File already open” error occurs.

KILL is used for all types of disk files: program
files, random data files, and sequential data files,

;. Example 200 KILL “DATA1.DAT"

See also “Disk File Handling,” in the Microsoft
BASIC User’s Guide.

230 LET

Syntax [LET J<variable> = <expression>

Purpose To assign the value of an expression to a variable.
Ren_;arks Notice the word LET is optional; i.e., the equal

i sign is sufficient for assigning an expression to a
variable name.

Example

Microsoft BASIC Commands and Statements

1O LET D= 12

120 LET E= 122

130 LET F = 1244

140 LET SUM=D+E+F

or

110D =12

120 E = 1242

130 F = 1244

140 SUM=D+E+F

231 LINE INPUT

Syntax
Purpose

Remg_;‘ks

A

LINE INPUT];] (<“prompt string'™;]
<string variable>

To input an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

<“prompt string'’> is a string literal that is
printed at the terminal before input is accepted. A
question mark is not printed unless it is part of
<“prompt string’’>. All input from the end of
<"“prompt string’”’> to the carriage return is
assigned to <string variable>. However, if a line
feed/carriage return sequence (this order only) is
encountered, both characters are echoed; but the
carriage return is ignored, the line feed is put into
<string variable>, and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a carriage
return/line feed sequence at the terminal.

67

Microsoft BASIC Reference Manual

~ Example

A LINE INPUT statement may be aborted by
typing Control-C. Microsoft BASIC will return to
command level and type “Ok”. Typing CONT
resumes execution at the LINE INPUT.

See “LINE INPUT#," Section 2.32.

232 LINE INPUT#

Syntax

- Purpose

Remarks

LINE INPUT#<file number><string variable>

To read an entire line (up to 254 characters), with-
out delimiters, from a sequential disk data file to a
string variable,

<file number>> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE IN-
PUT# reads all characters in the sequential file up
to a carriage return. It then skips over the carriage
return/line feed sequence. The next LINE INPUT#
reads all characters up to the next carriage return.
(If a line feed/carriage return sequence is encount-
ered, it is preserved.)

LINE INPUTY is especially useful if each line of a
data file has been broken into fields, or if a Micro-
soft BASIC program saved in ASCII format is
being read as data by another program. (See
“SAVE,"” Section 2.60.)

Microsoft BASIC Commands and Statements

Example 10 OPEN “0",1,"LIST”
20 LINE INPUT “CUSTOMER INFORMATION?":C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN “J",1,“LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 2344
MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

233 LIST

_ Syntax 1 LIST[<line number>]
Syntax 2 LIST [<line number>][-[<line number>}]

Purpose To list all or part of the program currently in
memory at the terminal.

Remarks Microsoft BASIC always returns to command
level after a LIST is executed,

i Syntax 1

If <line number> is omitted, the program is listed
beginning at the lowest line number. (Listing is
terminated either when the end of the program is
reached or by typing Control-C.) If <line number>
is included, only the specified line will be listed.

Syntax 2
This syntax allows the following options:
1. If only the first <line number> is specified,

that line and all higher-numbered lines are
listed.

69

Microsoft BASIC Reference Manual

Examples

2. If only the second <line number> (i.e.,
-[<line number>])) is specified, all lines from
the beginning of the program through that
line are listed.

3. If both <line number(s})> are specified, the en-
tire range is listed.

Syntax 1

LIST Lists the program currently in
memory,

LIST 500 Lists line 500,

Syntax 2

LIST 150- Lists all lines from 150 to the end.

LIST -1000 Lists all lines from the lowest,
number through 1000.

LIST 1560-1000 Lists lines 150 through 1000,
inclusive.)

234 LLIST

Syntax

%

Purpc;se

Remarks

Note

Example

70

LLIST [<line number>[-[<line number>]j]

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character-wide printer.
Microsoft BASIC always returns to command

level after an LLIST is executed, The options for
LLIST are the same as for LIST, Syntax 2.

LLIST and LPRINT are not included in all imple-
mentations of Microsoft BASIC.

See the examples for “LIST,” Syntax 2.

Microsoft BASIC Commands and Statements

235 LOAD

Syntax

Purpose

Remarks

Exami)le

LOAD <filename>[,R]
To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (Your operating system may ap-
pend a default filename extension if one was not
supplied in the SAVE command. Refer to ‘‘Micro-
soft BASIC Disk I/O,” in the Microsoft BASIC
User's Guide, for information about possible
filename extensions under your operating system.)

The R option automatically runs the program after
it has been loaded.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the designated program. However,
if the R option is used with LOAD, the program is
RUN after it is LOADed, and all open data files
are kept open. Thus, LOAD with the R option may
be used to chain several programs (or segments of
the same program). Information may be passed
between the programs using their disk data files.

LOAD “STRTRK",R
LOAD “B:MYPROG"

2.36 LPRINT and LPRINT USING

Syntax

Purpose

Remarks

LPRINT [<list of expressions>>]
LPRINT USING <string exp>:<list of expressions>

Ta print data at the line printer.

Same as PRINT and PRINT USING, except out-

put goes to the line printer. See Section 2.49 and
Section 2.50.

71

Microsoft BASIC Reference Manual

Note

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in all imple-
mentations of Microsoft BASIC.

2.37 LSET and RSET

Syntax

‘ Purpose

- Remarks

Examples

Note

72

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

To move data from memory to a random file buffer
(in preparation for a PUT statement),

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET left-
justifies the string in the field, and RSET right-
justifies the string. (Spaces are used to pad the
extra positions.) If the string is too long for the
field, characters are dropped from the right.
Numeric values must be converted to strings
before they are LSET or RSET. See ‘“MKIS$,
MKSS$, MKDS$,"” Section 3.26.

150 LSET A$ = MKS$(AMT)
160 LSET D$ = DESC($)

See also “Disk File Handling,” in the Microsoft
BASIC User's Guide.

LSET or RSET may also be used with a nonfielded
string variable to left-justify or right-justify a
string in a given field, For example, the program
lines

110 A$ = SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character field.
This can be very handy for formatting printed
output.

Microsoft BASIC Commands and Statements

238 MERGE

Syntax

Purpose

Remarks

-

Example

MERGE <filename>

To merge a specified disk file into the program cur-
rently in memory.

<filename> is the name used when the file was
SAVEd. (Your operating system may append a
default filename extension if one was not supplied
in the SAVE command. Refer to “Disk File Han-
dling,” in the Microsoft BASIC User’s Guide, for
information about possible filename extensions
under your operating system.) The file must have
been SAVEd in ASCII format, (If not, a “‘Bad file
mode”’ error occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the corre-
sponding lines in memory. (MERGEing may be
thought of as “inserting”’ the program lines on
disk into the program in memory.}

Microsoft BASIC always returns to command
level after executing a MERGE command.

MERGE “NUMBRS"

239 MID$

Syntax

r

Purpose

MID$(<string exp1>,n[,m}) = <string exp2>

where n and m are integer expressions and <string
expl> and <string exp2> are string expressions.

To replace a portion of one string with another
string,

73

Microsoft BASIC Reference Manual

Remarks The characters in <string expl>, beginning at
position n, are replaced by the characters in <string
exp2>. The optional “m’ refers to the number of
characters from <string exp2> that will be used in
the replacement. If “m” is omitted, all of <string
exp2> is used. However, regardless of whether
“m” is omitted or included, the replacement of
characters never goes beyond the original length
of <string expl>.

Example 10 A% = “KANSAS CITY, MO"

20 MID$(AS$,14) = “KS"

30 PRINT A$

RUN

KANSAS CITY, KS

MID§ is also a function that returns a substring of
a given string. See Section 3.25.

240 NAME

Syntax NAME <old filename> AS <new filename>

Purpose To change the name of a disk file,

Remarks <old filename> must exist and <new filename>
must not exist; otherwise, an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with the
new name.

Example Ok
NAME “ACCTS" AS “LEDGER"

Ok

74

In this example, the file that was formerly named
ACCTS will now be named LEDGER.

B bz oy

Microsoft BASIC Commands and Statements

241 NEW
Syntax NEW
Purpose To delete the program currently in memory and

Remarks

Example

clear all variables.

NEW is entered at command level to clear
memory before entering a new program. Microsoft
BASIC always returns to command level after a
NEW is executed.

NEW

242 NULL

Syntax

Purpose

Remarks

Example

NULL <integer expression>

To set the number of nulls to be printed at the end
of each line,

For 10 character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletype® and Teletype-
compatible terminal screens. <integer expression>
should be 2 or 3 for 30 CPS hard copy printers. The
default value is 0.

Ok

NULL 2

Ok

100 INPUT X

200 IF X<50 GOTO 800

Two null characters will be printed after each line.

75

e 2T R S

T

Microsoft BASIC Reference Manuaul

243 ON ERROR GOTO

Syntax ON ERROR GOTO <line number>

Purpose To enable error handling and specify the first line
of the error handling routine.

Remarks Once error handling has been enabled, all errors
detected, including direct mode errors (e.g., syntax
errors), will cause a jump to the specified error
handling routine. If <line number> does not exist,
an “Undefined line” error results,

To disable error handling, execute an ON ERROR
GOTO o. Subsequent errors will print an error
message and halt execution. An ON ERROR
GOTO 0 statement that appears in an error han-
dling routine causes Microsoft BASIC to stop and
print the error message for the error that caused
the trap. It is recommended that all error handling
routines execute an ON ERROR GOTO 0 if an er-
ror is encountered for which there is no recovery
action.

Note If an error occurs during execution of an error

: handling routine, that error message is printed and
execution terminates. Error trapping does not
occur within the error handling routine,

Example 10 ON ERROR GOTO 1000

244 ON..GOSUB and ON...GOTO

Syntax ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

Purpose To branch to one of several specified line numbers,
depending on the value returned when an expres-
sion is evaluated.

76

s R st

Vo SETTUL AL, WSS -y |

Remarks

Example

Microsoft BASIC Commands and Statements

The value of <expression> determines which line
number in the list will be used for branching. For
example, if the value is three, the third line number
in the list will be the destination of the branch. (If
the value is a noninteger, the fractional portion is
rounded.)

In the ON...GOSUB statement, each line number
in the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater than
the number of items in the list (but less than or
equal to 255), Microsoft BASIC continues with the
next executable statement. If the wvalue of
<expression> is negative or greater than 255, an
“Illegal function call” error occurs.

100 ON L-1 GOTO 150,300,320,390

245 OPEN

Syntax
Purpose

Remarks

OPEN <mode> [#]<file number> <filename>{,<reclen>]
To allow I/O to a disk file.

A disk file must be OPENed before any disk 1/0

operation can be performed on that file. OPEN
allocates a buffer for 1/O to the file and determines
the mode of access that will be used with the buffer.,

<mode> is a string expression whose first char-
acter is one of the following:

O Specifies sequential output mode.
I Specifies sequential input mode.

R Specifies random input/output mode.

77

