O

Microsoft. BASIC

Reference Manual
er

Microsoft Corporation

1

VAV

Contents

Introduction 1
1 General Information about Microsoft BASIC

1.
) 1.
1.
1

1 Initialization 5

2 Modes of Operation 5
3 Line Format 5

4 Character Set 6

5 Constants 8

1
1.6 Variables 11

1.7 Type Conversion 13

1.8 Expressions and Operators 15
1.9 Input Editing 22

1.10 Error Messages 23

2 Microsoft BASIC
Commands and Statements 25

21 AUTO 29
2.2 CALL 30

23 CHAIN 31

24 CLEAR 34

25 CLOAD 35

2.6 CLOSE 36

2.7 COMMON 37
2.8 CONT 39

29 CSAVE 39

210 DATA 41

211 DEFFN 42

2.12 DEFINT/SNG/DBL/STR 43
. 213 DEF USR 44

| 2.14 DELETE 45

f 215 DIM 45

| 2.16 EDIT 46

217 END 50

2.18 ERASE 51

Contents

iv

2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46

2.47-

2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60

ERR and ERL Variables 51

ERROR 52

FIELD 54

FOR.. .NEXT 56

GET 59

GOSUB.. RETURN 59
GOTO 60

IF. . .THEN[...ELSE] and IF.. .GOTO 6]
INPUT 63

INPUT# 65
KILL 66
LET 66

LINE INPUT 47
LINE INPUT# 68

LIST 69
LLIST 70
LOAD 71

LPRINT and LPRINT USING 71
LSET and RSET 72

MERGE 73

MID$ 73

NAME 174

NEW 75

NULL 175

ON ERROR GOTO 7¢
ON...GOSUB and ON . . .GOTO 76
OPEN 77

OPTION BASE 178

ouT 79
POKE 179
PRINT 80

PRINT USING 82
PRINT# and PRINT# USING 86
PUT 89
RANDOMIZE 90
READ 91

REM 92

RENUM 93
RESTORE 94
RESUME 95
RUN 96

SAVE 97

2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68

STOP 98

SWAP 99
TRON/TROFF 99
WAIT 100

WHILE. . WEND 101
WIDTH 102

WRITE 103

WRITE# 104

Microsoft BASIC Functions

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

ABS 107
ASC 108
ATN 108
CDBL 109
CHRS$ 109
CINT 110
COS 110
CSNG 111
CVI, CVS, CVD 111
EOQOF 112
EXP 112
FIX 113
FRE 113
HEX$ 114
INKEY$ 114
INP 115
INPUTS 115
INSTR 116
INT 116
LEFTS$ 117
LEN 117
LOC 117
LOG 118
LPOS 118
MID$ 119
MKI$, MKS$, MKD$ 119
OCT$ 120
PEEK 120
POS 121

RIGHTS 121

105

Contents

Contents

3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

RND 122
SGN 122
SIN 123
SPACE$ 123
SPC 124
SQR 124
STRS$ 125
STRINGS 125
TAB 125
TAN 126
USR 126
VAL 127

VARPTR 128

Appendices 129

A Error Codes and Error Messages
B Mathematical Functions 137

C ASCII Character Codes 139

D Microsoft BASIC Reserved Words
Index 143

131

141

Chapter 1

(General Information
about Microsoft BASIC

1.1 Initialization 5

1.2 Modes of Operation 5
1.3 Line Format 5

1.3.1 Line Numbers 6

1.4 Character Set - 6

14.1 Control Characters 8
1.5 Constants 8

1.5.1 Single and Double Precision Form
for Numeric Constants 10

1.6 Variables 11

1.6.1 Variable Names and
Declaration Characters 11

1.6.2 Array Variables 12

1.6.3 Space Requirements 13
1.7 Type Conversion 13

1.8 Expressions and Operators 15
1.8.1 Arithmetic Operators 16

1.8.1.1 Integer Division and
Modulus Arithmetic 16
1.8.1.2 Overflow and Division by Zero

1.8.2 Relational Operators 18
1.8.3 Logical Operators 19

17

1.84 Functional Operators 21
1.8.5 String Operators 21

1.9 Input Editing 22

1.10 Error Messages 23

General Information

1.1 Initialization

The procedure for initialization will vary with different implemen-
tations of Microsoft BASIC. Check the Microsoft BASIC User's
Guide for your machine to determine how Microsoft BASIC is ini-
tialized with your operating system.

1.2 Modes of Operation

When Microsoft BASIC is initialized, it displays the prompt
“Ok”. “Ok” indicates Microsoft BASIC is at command level; that
is, it is ready to accept commands. At this point, Microsoft BASIC
may be used in either of two modes: direct mode or indirect mode.

In direct mode, Microsoft BASIC statements and commands are
not preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may be dis-
played immediately and stored for later use, but the instructions
themselves are lost after execution. Direct mode is useful for
debugging and for using Microsoft BASIC as a “calculator”’ for
quick computations that do not require a complete program.

Indirect mode is used for entering programs. Program lines are

preceded by line numbers and are stored in memory. The program
stored in memory is executed by entering the RUN command.

1.3 Line Format

Microsoft BASIC program lines have the following format (square
brackets indicate optional input):

nnnnn BASIC statement:BASIC statement..)] <carriage return>

Microsoft BASIC Reference Manual

More than one BASIC statement, may be placed on a line, but each
must be separated from the last by a colon.

A Microsoft BASIC program line always begins with a line
number and ends with a carriage return. A line may contain a max-
imum of 255 characters.

It is possible to extend a logical line over more than one physical
line by using the <line feed> key. <line feed> lets you continue typ-
mg a logical line on the next physical line without entering a
<carriage return>,

13.1 Line Numbers

"Every Microsoft BASIC program line begins with a line number,

Line numbers indicate the order in which the program lines are
- stored in memory. Line numbers are also used as references in
“branching and editing. Line numbers must be in the range 0 to
65529,

A period () may be used in EDIT, LIST, AUTO, and DELETE
commands to refer to the current line.

14 Character Set

The Microsoft BASIC character set is comprised of alphabetic
cha:aqters, numeric characters, and special characters.

The alphabetic characters in Microsoft BASIC are the uppercase
and lowercase letters of the alphabet.

The Microsoft BASIC numeric characters include the digits 0
through 9.

General Information

In addition, the following special characters and terminal keys are
recognized by Microsoft BASIC:

Character Action

Blank

Equals sign or assignment symbol

Plus sign

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Up arrow or exponentiation symbol

Left parenthesis

Right parenthesis

Percent ‘

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

; Semicolon

| : Colon

Ampersand

Single quotation mark {apostrophe)

Question mark

Less than

Greater than

Backslash or integer division symbol

At sign

—_ Underscore

<rubout> Deletes last character typed.

<escape> Escapes edit mode subcommands. See
Section 2.186.

<tab> Moves print position to next tab stop.
Tab stops are set every eight columns,

<line feed> Moves to next physical line.

<carriage return> Terminates input of a line.

. - l-—u—un—a*a&‘-—"ﬁ-)"--..'I_*_”

@~ VA= g

Microsoft BASIC Reference Manual

141 Control Characters

Microsoft BASIC supports the following control characters:

Control

Character Action

Control-A Enters edit mode on the line being typed.

Control-C Interrupts program execution and returns
to BASIC command level.

Control-G Rings the bell at the terminal.

Control-H Backspaces. Deletes- the last character
typed. :

Control-I Tabs to the next tab stop. Tab stops are
set every eight columns.

Control-O Halts program output while execution
continues. A second Control-O resumes
output. :

Control-R Lists the line that is currently being typed.

Control-S Suspends program execution,

Control-Q Resumes program execution after a
Control-S. _

Deletes the line that is currently being

Contyol-U

typed.

1_.5 Constants

Constants are the values Microsoft BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric char-
acters enclosed in double quotation marks,

General Information

Examples

“"HELLO"
"$25,000.00" .
“Number of Empioyees”

Numeric constants are positive or negative numbers. Microsoft
BASIC numeric constants cannot contain commas. There are five
types of numeric constants:

1. Integer constants Whole numbers between -32768 and
32767. Integer constants do not con-
tain decimal points.

2, Fixed-point Positive or negative real numbers,

constants l.e., numbers that contain decimal
points.

3. Floating-point Positive or negative numbers repre-

constants sented in exponential form (similar to

scientific notation), A floating-point
constant consists of an optionally
signed integer or fixed-point number
{the mantissa) followed by the letter
E and an optionally signed integer
{the exponent). The allowable range
for floating-point constants is 10-* to
10+3%,

Examples

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point con-
stants are denoted by the letter D in-
stead of E. See Section 1.5.1.)

4. Hex constants Hexadecimal numbers, denoted by
the prefix &H,
Examples

&H76
&H32F

Microsoft BASIC Reference Manual

5. Octal constants Octal numbers, denoted by the prefix
&O or &.
Examples

&0347
&1234

Note

The 8K version of Microsoft BASIC does not support hexa-
decimal or octal constants.

15.1 Single and Double Precision Form
for Numeric Constants

Numeric constants may be either single precision or double preci-
sion numbers. Single precision numeric constants are stored with 7
digits of precision, and printed with up to 6 digits of precision.
Double precision numeric constants are stored with 16 digits of
precision and printed with up to 16 digits.

A single precision constant is any numeric constant that has one of
the following characteristics:

1. Seven or fewer digits.

2. Exponential form using E.

3. A trailing exclamation point (!).
Examples

46.8

-1.09E-06

3489.0
22.51

10

(ieneral Information

A double precision constant ig any numeric constant that has one
of these characteristics:

1. Eight or more digits.
2. Exponential form using D.

3. A trailing number sign (#).
Examples

345692811
-1.09432D-06
3489.0#
7654321.1234

1.6 Variables

Variables are names used to represent values used in a BASIC pro-
gram. The value of a variable may be assigned explicitly by the
Programmer, or it may be assigned as the result of calculations in
the program. Before a variable is assigned a value, its value is
assumed to be zero.

1.6.1 Variable Names and Declaration Characters

Micrusoft BASIC variable names may be any length. Up to 40
characters are significant. Variable names can contain letters,
numbers, and the decimal point. However, the first character must
be a letter. Special type declaration characters are also allowed—
see below.

A variable name may not be a reserved word, but embedded
reserved words are allowed. Reserved words include all Microsoft
BASIC commands, statements, function names, and operator
names. If a variable begins with FN, it is assumed to be a call to a
user-defined function, :

Variables may represent either a numeric value or a string. String
variable names are written with a dollar sign ($) as the last char-

11

Microsoft BASIC Reference Manual

acter. For example: A$ = “SALES RE PORT.” The dollar sign is a
variable type declaration character; that is, it “declares’’ that the
variable will represent a string.

Numeric variable names may declare integer, single precision, or
double precision values. The type declaration characters for these
variable names are as follows:

% Integer variable
! Single precision variable

Double precision variable
The default type for a numeric variable name is single precision.

- Examples of Microsoft BASIC variable names: .

Pi# Declares a double precision value.

MINIMUM! Declares a single precision valye.

LIMIT% Declares an integer value.
N$ Declares a string value,
ABC Represents - single preci~i~- valye,

There is a second method by . .ch variable types may be declared.
The Microsoft BASIC statements DE FINT, DEFSTR, DEFSN G,
and DEFDBL may be included in a program to declare the types
for certain variable names. These statements are described in
detail.in Section 2.12.

1.6.2‘ Array Variables

An array is a group or table of values referenced by the same
variable name. Each element in an array is referenced by an array
variable that is subscripted with an integer or an integer expres-
sion. An array variable name has as many subscripts as there are
dimensions in the array. For example, V(10) would reference a
value in a one-dimension array, T{ 1,4) would reference a value in a
two-dimension array, and so on. The maximum number of dimen-
sions for an array is 255. The maximum number of elements per
dimension is 32,767.

12

General Information

163 Space Requirements

The following table lists only the number of bytes occupied by the
values represented by the variable names. Additional require-
ments may vary according to implementation.

Variables Type Bytes

Integer
0 Single Precision 4

Double Precision 8

Arrays Type Bytes
Integer 2 per element
Single Precision 4 per element
Double Precision 8 per element

Strings

3 bytes overhead plus the present contents of the string.

O 1.7 Type Conversion

When hecessary, Microsoft BASIC will convert a numeric con-
stant from one type to another. The following rules and examples
should be kept in mind.

13

Microsoft BASIC Reference Manual

14

If a numeric constant of one type is set equal to a numeric
variable of a different type, the number will be stored as
the type declared in the variable name. {If a string variable
is set equal to a numeric value or vice versa, a ‘“Type mis-
match”’ error occurs.)

Example

10 A% =23.42
20 PRINT A%
RUN

23

During expression evaluation, all of the operands in an
arithmetic or relational operation are converted to the
same degree of precision, i.e., that of the .most precise
operand. Also, the result of an arithmetic operation is
returned to this degree of precision.

Examples

10 D# =64#/17 The arithmetic was performed in

20 PRINT D# double precision and the result

RUN was returned in D# as a double
.8571428571428571 precision value.

10 D=6#7 The arithmetic was performed in

20 PRINT D double precision and the result

RUN was returned to D (single preci-
857143 sion variable), rounded, and

printed as a single precision value.

Logical operators {see Section 1.8.3) convert their operands
to integers and return an integer result. Operands must be
in the range -32768 to 32767 or an “Overflow” error occurs.

When a floating-point value is converted to an integer, the
fractional portion is rounded.

Example

10 C% =55.88
20 PRINT C%
RUN

56

General Information

If a double precision variable is assigned a single precision
value, only the first seven digits (rounded) of the converted
number will be valid. This is because only seven digits of
accuracy were supplied with the single precision value. The
absolute value of the difference between the printed double
precision number and the original single precision value
will be less than 6.3E-8 times the original single precision
value.

Example

10 A=2.04
20B#=A
30 PRINT A;B#
RUN
2.04 2.039999961853027

1.8 Expressions and Operators

An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators which pro-
duces a single value.

Operators perform mathematical or logical operations on values.
The Microsoft BASIC operators may be divided into four cate-

gories:

W N

Arithmetic
Relational
Logical

Functional

Each category is described in the following sections.

15

Microsoft BASIC Reference Manual

18.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Expression
A Exponentiation XY
- Negation -X
./ Multiplication, Floating- X*Y
point Division XY
+,~ Addition, Subtraction X+Y

To change the order in which the operations are performed, use
-* parentheses. Operations within parentheses are performed first.

Inside parentheses, the usual

order of operations is maintained.

Here are some sample algebraic expressions and their Microsoft

BASIC counterparts.

Algebraic Expression

X+2Y

BASIC Expression
X+Y*2
X-Y/Z

X»Y/Z

(X+Y)YZ
(X*2)0Y
XMY*Z)

X#*-Y) Consecutive operators are
separated by parentheses.

18.1.1 Integer Division and Modulus Arithmetic

Two additional operators are available in Microsoft BASIC: in-
teger division and modulus arithmetic,

16

General Informaiion

Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be in the range -32768 to 32767) before
the division is performed, and the quotient is truncated to an integer.

Example

10\4=2
25.68\6.99 =3

Integer division follows multiplication and floating-point division
in order of precedence.

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of an in-
teger division.

| E‘xample

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=5 {26/7=3 with a remainder 5)

Modulus arithmetic follows integer division in order of precedence.

1.8.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, division by zero is en-
countered, the “Division by zero” error message is displayed,
machine infinity with the sign of the numerator is supplied as the
result of the division, and execution continues. If the evaluation of
an exponentiation operator results in zero being raised to a
negative power, the ‘‘Division by zero” error message is displayed,
positive machine infinity is supplied as the result of the exponenti-
ation, and execution continues.

If overflow occurs, the “Overflow” error message is displayed,

machine infinity with the algebraically correct sign is supplied as
the result, and execution continues.

17

Microsoft BASIC Reference Manual

1;8.2 Relational Operators

Relational operators are used to compare two values. The result of
the comparison is either “true” (-1) or “false” (0). This result may
then be used to make a decision regarding program flow. (See ‘“‘IF"
statements, Section 2.26.)

The relational operators are:

Operator Relation Tested Example
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y

> Greater than XY
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

{The equal sign is also used to assign a value to a variable. See
“LET,” Section 2.30.)

When arithmetic and relational operators are combined in one ex-
pression, the arithmetic is always performed first. For example,
the expression

X Y(T-1)/Z

is t;rue; if the value of X plus Y is less than the value of T-1 divided
by Z.

Examples

"IF SIN(X)<0 GOTO 1000
IF 1 MOD J<>0 THEN K=K + 1

18

General Information

183 ‘Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator returns
a bitwise result which is either *‘true”’ (not zero) or *‘false’’ (zero). In
an expression, logical operations are performed after arithmetic
and relational operations. The outcome of a logical operation is
determined as shown in Table 1. The operators are listed in order of
precedence.

Table 1. Microsoft BASIC
Relational Operators Truth Table

NOT
X NOTX
1 0
0 1
AND
X Y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0
OR
X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0
XOR
X Y X XOR Y
1 1 0
] 1 0 1
o 0 1 1
0 0 0
EQV
X Y XEQVY
1 1 1
1 0 0
0 1 0
0 0 1
IMP
X Y XIMPY
1 1 1
1 0 0
0 1 1
0 0 0 1

19

Microsoft BASIC Reference Manual

relations and return a true or false value to be used in a decision
(see “IF" statements, Section 2.26).

Example

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit,
signed, two’s complement, integers in the range -32768 to 327 67.
(If the operands are not in this range, an error results.) If both
operands are supplied as 0 or -1, logical operators return 0 or -1,
The given operation is performed on these integers in bitwise
" fashion, i.e., each bit of the result is determined by the correspond-
ing bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a par-
ticular bit pattern, For instance, the AND operator may be used to
“mask” all but one of the bits of a status byte at a machine 1/0
port. The OR operator may be used to “‘merge” two bytes to create -
a particular binary value. The following examples will help demon-
strate how the logical operators work.

63 AND 16=16 63=binary 111111 and 16=binary 10000, so 63
AND 16=186,

15 AND 14=14 15=binary 1111 and l4=binary 1110, so 15
v AND 14=14 (binary 1110}

~-1AND 8=8 -1=binary 1111111111111111 and 8=binary

1000, so -1 AND 8=8,
40R2=6 4=binary 100 and 2=binary 10, so 4 OR 2=6
_ (binary 110).
1I00R 10=10 10=binary 1010, so 1010 OR 1010=1010
{decimal 10).
-1OR-2=-1 -1=binary 1111111111111111 and -2=binary

1111111111111110, so -1 OR -2=-1. The bit
complement of sixteen zeros is sixteen ones,
which is the two's complement representation
of -1,

NOT X=-{X+1) The two’s complement of any integer is the bit
complement plus one,

20

General Information

1.84 Functional Operators

A function is used in an expression to call a predetermined opera-
tion that is to be performed on an operand. Microsoft BASIC has
“intrinsic” functions that reside in the system, such as SQR
(square root) or SIN (sine). All Microsoft BASIC intrinsic func-
tions are described in Chapter 3.

Microsoft BASIC also allows *‘user-defined” functions that are
written by the programmer. See “DEF FN . Section 2.11.

185 String Operators

Strings may be concatenated by using +.

- Example

10 A3 = "“FILE" : B$ = “NAME”
20 PRINT A$ + B$

30 PRINT “NEW” + A$ + B$
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that
are used with numbers:

= <> < > < = > =

String comparisons are made by taking one character at a time
from each string and comparing the ASCII codes. If all the ASCII
codes are the same, the strings are equal. If the ASCII codes differ,
the lower code number precedes the higher. If during string com-
parison the end of one string is reached, the shorter string is said
to be smaller. Leading and trailing blanks are significant.

21

Microsoft BASIC Reference Manual

Examples

uAAn<nABu
“FILENAME” = “FILENAME”
HX&|r>ux#n

uCLn>uCLn

‘Ikg,l)‘lKG"
“SMYTH"<“SMYTHE"
B$<“9/12/78" where

B% ="8/12/78"

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison ex-
pressions must be enclosed in quotation marks.

1.9 Input Editing

If an incorrect character is entered as a line is being typed, it can be
deleted with the SRUBOUT> key or with Control-H. Rubout sur-
rounds the deleted character(s) with backslashes. Control-H has the
effect of backspacing over a character and erasing it. Once a char-
acter(s) has been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type Control-U.
A carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in mem-

ory, simply retype the line using the same line number. Microsoft
BASIC will automatically replace the old line with the new line.

More sophisticated editing capabilities are provided. See “EDIT,”
Section 2.16.

To delete the entire program currently residing in memory, enter
the NEW' command. (See Section 2.41.) NEW is usually used to
clear memory prior to entering a new program,

22

R iy

¥ -_.e.‘-\:'ﬁ

i tig iy

General Information

1.10 Error Messages

If an error causes program execution to terminate, an error
message is printed. For a complete list of Microsoft BASIC error
codes and error messages, see Appendix A.

23

Chapter 2
Microsoft BASIC

Commands and Statements

Introduction 29

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
.13
2.14
2.15
2.16
2.17

AUTO 29
CALL 30
CHAIN 31
CLEAR 34
CLOAD 35
CLOSE 36
COMMON 37
CONT 39
CSAVE 39
DATA 41
DEFFN 42
DEFINT/SNG/DBL/STR
DEF USR 44
DELETE 45
DIM 45
EDIT 46
END 50

43

25

2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
'2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
© 2.40
2.41
2.42

26

ERASE 51
ERR and ERL Variables 51
ERROR 52

FIELD 54
FOR.. .NEXT 56
GET 59

GOSUB.. RETURN 59
GOTO 60

IF.. THENI.. .ELSE] and IF...GOTO

INPUT 63
INPUT# 65

KILL, 66

LET 66

LINE INPUT 67
LINE INPUT# 68

LIST 69

LLIST 70

LOAD 71

LPRINT and LPRINT USING
LSET and RSET 72
MERGE 73

MID$ 73

NAME 74

NEW 75

NULL 175

71

61

2,43
2.44
2.45
2.46
2.47
2.48
2.49
2.50

251
2.52

2.53
2.54
2.55
2.56
2.57
2.58
2.59

2.60
2.61;

2.62
2.63
2.64
2.65
2.66
2.67
2.68

ON ERROR GOTO 76
ON...GOSUB and ON. . .GOTO 176
OPEN 77

OPTION BASE 178

ouT 79
POKE 79
PRINT 80

PRINT USING 82

PRINT# and PRINT# USING 86
PUT 89 :
RANDOMIZE 90

READ 91
REM 92
RENUM 93

RESTORE 94
RESUME 95

RUN 96

SAVE 97

STOP 98

SWAP 99
TRON/TROFF 99
WAIT 100

WHILE. . WEND 101
WIDTH 102

WRITE 103

WRITE# 104

Microsoft BASIC Commands and Statements

Microsoft BASIC commands and statements are described in this
chapter. Each description is formatted as follows:

Syntax

Purpose
Remarks

Example

Note

Shows the correct syntax for the instruction. See
the “Introduction” to this manual for syntax nota-
tion,

Tells what the instruction is used for.
Describes in detail how the instruction is used.

Shows sample programs or program segments
that demonstrate the use of the instruction,

Describes special cases or provides additional per-
tinent information.

21 AUTO

Syntax

Purpose

Remarks

AUTO [<line number>{ <increment>]}

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10. If
<line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the number
to warn the user that any input will replace the ex-
isting line. However, typing a carriage return
immediately after the asterisk will save the line
and generate the next line number.

29

Microsoft BASIC Reference Manual

Example

22 CALL

" Syntax

Purpose

Remarks

| Example

Note

30

AUTO is terminated by typing Control-C. The line
in which Control-C is typed is not saved. After
Control-C is typed, Microsoft BASIC returns to
command level.

AUTO 100,50 Generates line numbers
100, 150, 200 ...

AUTO Generates line numbers 10, 20,
30, 40 ...

CALL <variable name>{(<argument list>)]
To call an assembly language subroutine,

The CALL statement is one way to transfer pro-
gram flow to an external subroutine. (See also the
USR function, Section 3.41)

<variable name> contains an address that is the
starting point in memory of the subroutine,
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables,

The CALL statement generates the same calling
sequence used by Microsoft FORTRAN, Micro-
soft COBOL, and Microsoft BASIC Compilers.

110 MYROUT = & HD00O
120 CALL MYROUT(,J.K)

In a Microsoft BASIC Compiler program, line 110
is not required because the address of MYROUT
will be assigned by the linking loader at load time,

Microsoft BASIC Commands and Statements

23 CHAIN

Syntax

Purpose

Remarks

Example 1

CHAIN [MERGE I<filename>[{<line number exp>]
[LALL)Y,DELETE <range>]]

To call a program and pass variables to it from the
current program.

<filename> is the name of the program that is
called.

<line number exp> is a line number or an expres-
sion that evaluates to a line number in the called
program. It is the starting point for execution of
the called program. If it is omitted, execution
begins at the first line,

The COMMON statement may be used to pass
variables (see Section 2.7).

10 REM THIS PROGRAM DEMONSTRATES CHAIN-
ING USING COMMON TO PASS VARIABLES.

20 REM SAVE THIS MODULE ON DISK AS “PROG1”
USING THE A OPTION.

30 DIM A$(2),B3$(2)

40 COMMON A$(,B$()

50 AS$(1)="VARIABLES IN COMMON MUST BE
ASSIGNED"

60 AS$(2)=“VALUES BEFORE CHAINING.”

70 B$(1)="": B§(2) = "

80 CHAIN “PROG2"

90 PRINT: PRINT B$(1): PRINT: PRINT B$(2):

PRINT

100 END

31

Microsoft BASIC Reference Manual

Example 2

Example 3

32

10 REM THE STATEMENT “DIM A$(2),B$(2)" MAY
ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.

30 REM SAVE THIS MODULE ON THE DISK AS
"PROG2" USING THE A OPTION.

40 COMMON A$(),B3()

50 PRINT: PRINT A$(1);:A$(2)

60 B$(1)="NOTE HOW THE OPTION OF SPECIFY-
ING A STARTING LINE NUMBER"

70 B$(2)="WHEN CHAINING AVOIDS THE DIMEN-
SION STATEMENT IN ‘PROG1".”

80 CHAIN “PROG1",90

90 END

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the current
program is passed to the called program. If the
ALL option is omitted, the current program must
contain a COMMON statement to list the vari-
ables that are passed. See Section 2.7,

The MERGE option allows a subroutine to be
brought into the BASIC program as an overlay,
That is, a MERGE operation is performed with
the current program and the called program. The
called program must be an ASCIT file if it is to be
MERGEd.

After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may be
brought in. To do this, use the DELETE option.

10 REM THIS PROGRAM DEMONSTRATES CHAIN-
ING USING THE MERGE AND ALL OPTIONS.

20 REM SAVE THIS MODULE ON THE DISK AS
“MAINPRG".

30 A$="MAINPRG"

40 CHAIN MERGE "OVRLAY1”,1010,ALL

50 END

Note

Microsoft BASIC Commands and Statements

1000 REM SAVE THIS MODULE ON THE DISK AS
“OVRLAY1"” USING THE A OPTION.

1010 PRINT A$; “HAS CHAINED TO OVRLAY1.”
1020 A$="OVRLAY1"

1030 B$="“OVRLAY2"

1040 CHAIN MERGE "OVRLAY2" 1010,ALL,
DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS
“"OVRLAY2" USING THE A OPTION.

1010 PRINT A$; “HAS CHAINED TO ‘“:B$:".”
1020 END

The line numbers in <range> are affected by the
RENUM command.

The CHAIN statement with MERGE option

leaves the files open and preserves the current OP-
TION BASE setting.

If the MERGE option is omitted, CHAIN does
not preserve variable types or user-defined func-
tions for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables
must be restated in the chained program.

The Microsoft BASIC Compiler does not sup-
port the ALL, MERGE, DELETE, and
<line number exp> options to CHAIN. Thus, the
statement syntax is CHAIN <filename>. If you
wish to maintain compatibility with Microsoft
BASIC Compiler, it is recommended that COM-
MON be used to pass variables and that overlays
not be used. The CHAIN statement leaves the
files open during CHAINing.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise,

the user-defined functions will be undefined after
the merge is complete.

Microsoft BASIC Reference Manual

24 CLEAR

Syntax

Purpose

Remarks

Note

Examples

34

CLEAR [,[<expression1>][,<expression2>]]

To set all numeric variables to zero, all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.

<expressionl> is a memory location which, if
specified, sets the highest location available for
use by Microsoft BASIC.

<expression2> sets aside stack space for Micro-
soft BASIC. The default is 512 bytes or one-eighth
of the available memory, whichever is smaller,

Microsoft BASIC allocates string space dynami-
cally. An “Out of string space”’ error occurs only if
there is no free memory left for Microsoft BASIC
to use.

Microsoft BASIC Compiler supports the CLEAR
statement with the restriction that <expression1>
and <expression2> must be integer expressions, If
a value of 0 is given for either expression, the
appropriate default is used. The default stack size
1s 512 bytes, and the default top of memory is the
current top of memory. The CLEAR statement
performs the following actions:

Closes all files.

Clears all COMMON and user variables.
Resets the stack and string space.
Releases all disk buffers.

CLEAR

CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

Microsoft BASIC Commands and Statements

25 CLOAD

Syntax

Purpose

Remarks

CLOAD <filename>
CLOAD? <filename>
CLOAD* <array name>

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads
the program from cassette tape. <filename> is the
string expression or the first character of the string

expression that was specified when the program
was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that has
the same filename. If they are the same, Microsoft
BASIC prints “Ok”. If not, Microsoft BASIC
prints “NO GOOD”,

CLOAD* loads a numeric array that has been
saved on tape. The data on tape is loaded into the
array called <array name> specified when the array
was CSAVE *ed,

CLOAD and CLOAD? are always entered at com-
mand level as direct mode commands. CLOAD*
may be entered at command level or used as a pro-
gram statement. Make sure the array has been
DIMensioned before it is loaded. Microsoft
BASIC always returns to command level after a
CLOAD, CLOAD?, or CLOAD* is executed.
Before a CLOAD is executed, make sure the
cassette recorder is properly connected and in the
play mode, and the tape is positioned correctly.

See also “CSAVE," Section 2.9.

35

Note

Example

Syntax

'Purpose

Remarks

Example

36

Microsoft BASIC Reference Manyal

CLOAD and CSAVE are not included in all im-
plementations of Microsoft BASIC,

CLOAD “MAX2"

Loads file “MAX2" into memory.

26 CLOSE

CLOSE [[#)<tile number>{[#]<file number...>]]
To conclude 1/0 to a disk file,

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes

- all open files.

The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file may then be reOPENed using
the same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command
always CLOSE all disk files automatically. (STOP
does not close disk files.)

See ‘‘Disk File Handling,” in the Microsoft
BASIC User's Guide.

et

e

Microsoft BASIC Commands and Statemnents

2.7 COMMON

Syntax
Purpose

Remarks

Exainple

Note

COMMON <list of variables>
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON state-
ments may appear anywhere in a program, though
it is recommended that they appear at the begin-
ning. The same variable cannot appear in more
than one COMMON statement. Array variables
are specified by appending ‘()’ to the variable
name. If all variables are to be passed, use CHAIN
with the ALL option and omit the COMMON
statement.

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

Microsoft BASIC Compiler supports a modified
version of the COMMON statement. The COM-
MON statement must appear in a program before
any executable statements. The current nonexe-
cutable statements are:

COMMON

DEFDBL., DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

SINCLUDE

Array variables used in a COMMON statement
must be declared in a preceding DIM statement.

37

