T]

TRE

Y

L A T TR,

£

S PO PP

Gis e e wm b

e

: Drscrete devrce
; « Asingle-function packaged component;
K for example, a diode or a transistor)

e

Floppy drsk - . -
" A ferrite composition covered disk used

. for storing programs and data. Medium .

capacity storage - semi randem access,
used with development systems.

Gate
The simplest type of logical circuit.

Hardware
The physical components of a computer.

1/O Port

Inpul/Output Allows two-way
communication between the system and
the outsxde world.

Instrucu'on

One or more binary words which define
an operation to be performed and the
data to be used.

S i E i Aol IR

“- & semiconductor device contdining

- Mrcroelectromc devrces
.The generic term for electronic.

Integrated circuit

circuit elements which are manufactured
tina smgle piece of material and whrch

.~ A device which stores d1g1tal mformanon.
1. In sermconductor memones data may be

. components or circuits rnade to very
* small dlrﬂensrons

Mrcroprocessor vIPU) R
An LSI circuit design that provides, in
one or more chips, similar functions to
those contained in the central processing
unit of a computer. It interprets and
executes instructions and usually -
incorporates arithmetic capabilities.

Peripheral . .
Any device connected to a computer
through an interface. ;

Program

"+ The set of instructions to solve a problem

or control a process

~ g

PROM (programmable read-only memory)

A memory into which information can be
written after the device is manufactured,

*but thereafter cannot be altered. . .

*--~— MAP/DOI Copyright ...

1t

et bk Ay e
RAM (random access memory)

Wy

memory mto which mform' tion is

m«rcrystal structure whose ato omi

s-;.s

he area of physics whxch dealswith -
materials in their solid form. All silicon
rmconductors are sohd state d vxces

. SSI (small-scale mtegratron) i o
Aterm applied to integrated crrcurs
contamrng from one to twenty loglc i
! gates

"’I‘ansrstor

* An active sermconouctor devrce with

" three electrodes (emitter, base and
collector). Used asa switchorasan
amplifier.

VLSI (very-large-scale integration)

A term applied to integrated circuits
containing a minimum of 5,000 logic
gates, or more than 16,000 memory bits.

Wafer (or slice)

A thin disk of semxconductor matenal
“usually silicon, in which many. -
semiconductor devices are fabricated at
one time. The devices are subsequently
separated and assembled in mdwxdual
packages.

Designed by PA Design Unit

Fegwd TO O DORY FILES satasn

AZFIP BiFROG. BAG=A FROG. BAS

e TO MERGE FILES #aass

B
¢
B

RENUMBER OME PROGRAMME
EG FROG (1) L T 2000
FROG (2) 2010 TO END

.
|

- SAVE PROG (2),A
3 o- MEW

4~ LOAD PROG (1)
P~ MERGE FROG (2)

Lo HAVE FROG (NAME) | :

" O3
]
1

L L Fidlb B IVE PERATION sgsxs

5.
f o

T 1 AT AL ST PO O 3

INTRODUCTION -

CHAPTER 1
CHAPTER 2
CHAPTER 3

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H

EXBASIC Reference Manual

CONTENTS

~

General Information About EXBASIC
EXBASIC Commands and Statements
EXBASIC Functions

New Features in EXBASIC, Rélease 5.0
EXBASIC Disk 1/0

Assembly Language Subroutines

EXBASIC with the CP/M Operating System
Converting Programs to EXBASIC

Surmmery of Error Codes and Error Messages
Mathematical Functions

ASCII Character Codes

Introduction

EXBASIC is the most extensive implementation of BASIC available for the Z80 microprocessor,

This version (Release 5.0 and all higher numbers) of BASIC meets the ANSI qualifications for
BASIC as set forth in document BSRX3.60-1978, Each release of EXBASIC consists of two
upward compatible versions: Extended and Disk. This manuel is a reference for both versions of
EXBASIC, release 5.0 and later. ’

NOTE

The information in this manual is not applicable to Standard ROM PAC BASIC. For
that information, see Standard BASIC for the Sorcerer.

There are significant differences between the 5.03 release of EXBASIC and previous releases
(release 4.51 and earlier). If you have programs written under a previous release of EXBASIC,
check Appendix A for new features in 5.03 that may affect execution.

The manual is divided into three large chapters pius a number of appendices. - Chapter 1 covers a
variety of topics, largely pertaining to information representation when using EXBASIC. Chapter 2

_contains the syntax and semantics of every command and statement in EXBASIC, ordered
alphabetically. Chapter 3 describes all of EXBASIC's intrinsic functions, also ordered
alphabetically. The appendices contain information pertaining to the CP/M operating system;
lus lists of error messages, ASCII codes, and math functions; and helpful information on assembly
anguage subroutines- and disk 1/0. .

S

e vt by

T A SR ¢ n ¢

P T

CHAPTER 1

, " GENERAL INFORMATION ABOUT EXBASIC
1.1 INITIALIZATION ol L R
Look at Appendix D to see how EXBASIC is initialized with CP/M.

1.2 MODES OF OPERATION

When EXBASIC is initialized, it types the prompt "Ok", POk" means EXBASIC is at command
level, that is, it is ready to accept commands. At this point, EXBASIC may be used in either of
two modes: the direct mode or the indirect mode. .

In the direct mode, BASIC statements and commands are not preceded by line numbers. They are
executed as they are entered. Results of arithmetic and logical operations may be displayed
immediately and stored for later use, but the instructions themselves are lost after execution,
This mode is useful for debugging and for using your Sorcerer as a "ealeulator™ for quick
computations that do not require a complete program, s

The indirect mode is the mode used for entering programs. Program lines are preceded by line
numbers and are stored inmemory. The program stored in memory is executed by entering the RUN

command,

1.3 LINE FORMAT
Program lines in a BASIC program have the following format (square brackets indicate optional):

nhnnn BASIC statement[:BASIC statement...] {carriage return>

where nnnn is the line number.

At the programmer’s option, more than one BASIC statement may be placed cn a‘lix{é, but each
statement on a line must be separated from the last by a colon,

A BASIC program line always begins with a line number, ends with a carriage return, and may
contain a maximum of 255 characters in Extended and Disk EXBASIC. »

It is possible to extend a logical lfne over more than one physicel line by use of the terminal’s <line

feed> key. <Line feed> lets you continue typing a logical line on the next physical line without
entering a <carriage return>, .

1.3.1 Line Numbers

Every BASIC program line begins with a line number, Line numbers indicate the order in which
the program lines are stored inmemory and are also used as references when branching and editing,
Line numbers must be in the range 0 to 65529. A period (,) may be used in EDIT, LIST, AUTO and
DELETE commands to refer to the current line.

1.4 CHARACTER SET
The EXBASIC character set is comprised of alphabetic characters, numeric characters and special

characters.

The alphabetic characters in EXBASIC are the upper case and lower case letters of the alphabet.

The numeric characters in EXBASIC are the digits 0 through 9,
The following special characters and terminal keys are recognized by EXBASIC:

Character

EAV AR =8 a0~ BT 4 I

<rubout>
<escape>

<{tab>
<line feed>

<carriage
return>

Name

Blank

Equel sign or assignment symbol
Plus sign ; o
Minus ‘sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol

- Left parenthesis

Right parenthesis
Percent

Number (or pound) sign
Dollar sign
Exclamation point

:Left bracket

Right bracket
Comma

Period or decimel point
" Single quotation mark (apostrophe)

Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol
At-sign

Underscore

Deletes last character typed.
Escapes Edit Mode subcommands,
See Section 2.16,

Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line,

Terminates input of a line,

1.4.1 Control Characters

The {ollowing control characters are in EXBASIC:

Control-A
Control-C

Control-H
Control-~1
Control-0O

Control-R
Control-§
Control-Q
Control-U

Enters Edit Mode on the line being typed.

Interrupts program execution and returns td EXBASIC command level, (Prints
a 7C on the screen.)

Backspace. Deletes the last character typed.
Tab, - Tab stops are every eight columns,

Helts program output while execution continues, A second Control-O
restarts output. (Both “O's print on the screen.)

Retypes the line currently being typed.
Suspends program execution,
Resumes program execution after a Control-S, (So does any other key.)

Deletes the line currently being typed.

et

. AheiwBiiay

 HREEAMI e

1.5 CONSTANTS

e Rl

Constants are the actual values BASIC uses during execution. There are two types of constants,

ke« A i e

string and numeric, ...

A string constant is a sequence of up to 255 alphafniﬁxéi'ic characters enclosed in double‘duotation
marks. Examples of string constants: =~ | . R

"HELLO" |
n$25,000,00" :
"Number of Employees”

Numeric constants are positive or negative numbers. Numerie constants in EXBASIC cannot
contain commas. There are five types of numeric constants: K v

1. Integer constants . Whole numbers between -32768 and +32767, Integer constants do not
have decimal points, (Integer constants outside the range print with
a trailing exclamation point, (You may not put one in, but when you
list a program, or when a program prints its output, the ! is added.)

2. Fixed Point Positive or negative real numbers, i.e., numbers that contain decimal
' points. B T i
3. Floating Point Positive or negative numbers represented in exponential form (similar

to scientific notation). A floating point constant consists of an

optionally signed integer or fixed point number (the mantissa)
followed by the letter E and an optionally signed integer (the
exponent). The exponent must be in the range -38 to +38.
Examples: '

235.988E-7 = 0000235988
2353E6 = 2359000000

(Double precision floating point constants use the letter D instead of E, See
Section 1.5.1.) '

4, Hex constants Hexadecimal numbers with the prefix &H. Exeamples: , N\

&HT6 ~ -
&H32F , o,

5. Octal constants Octal numbers with the prefix &0 or &. Examples:

&0347
&1234

1.5.1 Single And Double Precision Form For Numéric Constants -

Numeric constants may be either single precision or double preéision numbers, With double
precision, the numbers are stored with 16 digits of precision, and printed with up to 16 digits.

A single precision constant is any numeric constant that has:
1. seven or fewer digits, or
2. exponential form using E, or
3. a trailing exclamation point (!)

A double precision constant is any numeric constant that has:
"1. eight or more digits, or
2. exponential form using D, or

3. a trailing r;mnber sign (#)

Examples:

Single PrecisionlConstants - Double Precision Constants
468 B 345692811 Eic
~1,09E-06 S -1,09432D-06

3489.0 | 348904
22.5! 7654321,1234
650000! . -1234567890

1.6 VARIABLES

Variables are names used to represent velues that are used in an EXBASIC program. The value of
a variable may be assigned explicitly by the programmer, or it may be assigned as the result of
calculations in the program. Before a variable is assigned a value, its value is assumed tobe zero,

1.6.1 Variable Names and Declaration Characters

EXBASIC variable names:may be any length, Up to 40 characters are significant. The

characters allowed in a variable name are letters and numbers, and the decimal point is allowed,

g‘gia first character must be a letter. Special type declaration characters are also allowed - see
oW, ‘ , ,

A variable name may not be a reserved word. EXBASIC allows embedded reserved words. If a
variable begins with FN, it is assumed to be a call to a user-defined function, Reserved words
include all EXBASIC commands, statements, function names and operator names.,

Variables may represent either a numeric value or a string. String variable names are written with a
dollar sign ($) as the last character, For example: = "SALES REPORT", The dollar sign is a
variable type declaration character, that is, it "declares” that the veriable represents a string,

Numeric variable names may declare integer, single or double precision vealues. The type
declaration characters for these vearisble names are: ’

% Integer variable

! Single precision variable

Double precisioh variable
The default type for a numeric varieble name is single precision,
Examples of EXBASIC variable names follow,

-PI declares a double precision value
-MINIMUM! declares a single precision velue
LIMIT% declares an integer value

N$ declares a string value

ABC represents a single precision vealue

In the Extended and Disk versions of EXBASIC, there is a second method by which variable types
may be declared. The EXBASIC statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain variable names. These statements are
described in deteil in Section 2,12. :

1.6.2 Array Variables

An array is a group or table of values referenced by the same variable name, Each element in an
array is referenced by an array varisble that is subseripted with integers or integer expressions,
An array variable name has as many subscripts as there are dimensions in the array, For example
V(10) references a value in a one-dimensional array, T(1,4) references a value in a two-
dimensional array, and so on, » ‘

O R SR T TS B
[P we g o n

1.7 TYPE CONVERSION - v - % omenr onfoonfuiidseoifisd swenios comiss
When necessary, EXBASIC converts a numeric constant from one type' to aﬁbthér. The following
rules and examples should be kept in mind, D ey et i ®

" A

1. If a numeric constant of one type is set equal to a numeric varieble of a different type,
the number is stored as the type declared in the veriable name, (If a string variable is
set equal to a numeric value or vice versa, a "Type mismatch~ error occurs,)
Example: ; ; :

10 A% = 23.42

20 PRINT A%

RIJN . P -
23 e :

2, During expression evaluation, all of the operands in an arithmetic or relational operation
are converted to the same degree of precision, i.e., that of the most precise operand.
Also, the result of an arithmetic operation is returned to this degree of precision and
prin{ed as specified.. : : : :

Examples:
10 D = 6#/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D# as
.8571428571428571 a double precision value,
10 D = 6#/7 The erithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D

.857143 (single precision variable), rounded and printed as a single
precision value, ‘) N

3. Logical operators (see Section 1.8.3) convert their Operands to integers and i‘et_urn an
integer result. Operands mustbe in the range ~32768 to 32767 or an "Overflow" error
occurs, .

4, Yﬂllshen alfloatirg point value is converted to an integer, the fractional portion is rounded.
xample:

10 C% = 55.88
20 PRINT C¥%
RUN

56

5. If a double precision variable is assigned a single precision value, only the first seven
digits, rounded, of the converted number are valid. This is because only seven digits of
accuracy were supplied with the single precision value. The absolute value of the
difference between the printed double precision number and the original single precision
velue will be less than 6.3E-8 times the original single precision value, "

Example:

10 A = 2,04
20 B# = A

30 PRINT A;B#
RUN

2.04 2.039999961853027

Bk cppnio g bty

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may combine
constants and variables with operators to produce a single value, ‘

O%rators perform mathematical or logical .operations on values, The operators provided by
EXBASIC may be divided into four categories: B,

1. Arithmetic
2. Relational : '
3. Logical

4. Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Exprasion
. Exponentiation " Xy w
- Negation , -X
%/ Multiplication, Floating X*Yr
Point Division X/Y
+y= Addition, Subtraction - X+Y

To change the order in which the operations are performed, use parentheses. Operations within
parentheses are performed first. - Inside parentheses, the usual order of operations is maintained.

Here are some sample algebraic expressions and their EXBASIC counterparts,

Algebraic Expression BASIC Expression
X+2Y X+Y*2
X-Y X-Y/z
Z
X X*Y/Z
Z
Kzil’ (X+Y)/Z
(x2)¥ (x*2)°Y
= X~ (Y"z)
X(-Y) ¢ X*(-Y)

Two consecutive operators must be separated by
parentheses,

1.8.1.1 Integer Division and Modulus Arithmetic

Two additional operators are available in EXBASIC, integer division and modulus arithmetic,
Integer division is denoted by the backslash (\). The operands are rounded to integers (must be
in the range -32768 to 32767) before the division is performed, and the quotient is truncated to an
integer. For example: : : :

10\4 = 2 ‘
25.68\6.99 = 3

7

The precedence of integer division is just after multiplication and floating point division,
Modulus arithmetic is denoted by the operator MOD. It gives the int
s MR RRY: £

eger velue that is the
remainder of an integer division, For example: - . . I T

777104 MOD 4 = 2 (10/4=2 with 8 remainder 2) .
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedeﬁce of modulus ariﬁunetic is just after integer division. |

1.8.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero is encountered, the "Division bx
zero" error message is displayed, machine infinity (the largest number EXBASIC recognizes) wit
the sign of the numerator is supplied as the resulf of the division, and execution continues, If the
evaluation of an exponentiation results in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity is supplied as the result of the
exponentiation, and execution continues, , ,

If overflow occurs, the "Overflow" error mess e is display,ed,: machine infinity with the
algebraically correct sign is supplied as the result, and execution continues, :

1.8.2 Relational Operators

Relational operators are used to compare two values, The result of the comparison is either
"true” (-1) or "false” (0). This result may then used to make a decision regarding program flow,
(See IF, Section 2.26,) - .

Operator Relation Tested Expression
= Equality . X=Y
o Inequality XOY
< Less than XY
> - Greater than Y s
<= Less than or equal to X=Y '
o= Greater than or equal to = X>=Y

(The equal sign is also used to essign a value to a variable, See LET, Section 2.30.)

When arithmetic and relational operators are combined in one 'expr&ssion, the arithmetie is always
performed first. For example, the expression

X+Y < (T-1)/Z
is true if the value of X plus Y is less than the value of T-1 divided by Z. More examples:

IF SIN(X)<0 GOTO 1000
IF T MOD J <> 0 THEN K=K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boolean operations,

- The logical operator returns a bitwise result which is ejther "true" (not zero) or "false" (zero),
In an expression, logical operations are performed after arithmetic and relational operations,
The outcome of a logical operation is determined as shown in the following table, The operators
are listed in order of precedence, :

NOT
X NOT X
1 -0
0 1
- X Y XANDY
1 1 1
1 0 0
0 1 0
0 0 0
OR
X Y XORY
1 1 1
1 0 1
0 1 1
0 0 0
XOR
X Y XXORY
1 1 0 2
i 1 1 : |
o 0 ®
IMP
X Y XIMPY
1 1 1
1 0 0
0 1 1
0 o 1
EQV
X Y XEQUY
11 1
1 0 0
0 1 0
0 © 1

Just as the relational operators can be used to make decisions regarding program flow, logical
operators can connect two or more relations and return a true or false value to be used in a
decision (see IF, Section 2.26). For example: '

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50 -
IF NOT P THEN 100

Logical operators work by converting their operands to sixteen bit, signed, two's complement .
integers in the range -32768 to +32767. (If the operands are not in this range, an error results,)

If both operands are supplied as 0 or -1, logical operators return 0 or -1, The given operation is
performed on these integers in bitwise fashion, i.e., each bit of the result is determined:by the
corresponding bits in the two operands. Thus, it is possible to use logical operators to testbytes

for a particular bit pattern. = For instance, the AND operator may be used to "mask* all but one of .
the bits of a status byte at a machine I/O port. The OR operator may be used to "merge" two’
bytes to create a particular binary value. The following examples help demonstrate how the
logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary 10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and .14 = binary 1110, so 15 AND 14 = 14 (binary 1110)
-1 AND 8=8 -1 = binary 1111111111111111 and 8 = binary 1000, so -1 AND 8 = 8

4 OR 2=6 4 = binary 100 and 2 =.binary 10, so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 = 1010 (10)

-1 OR -2=-1 -1 = binary 1111111111111111 and -2 = binary 1111111111111110, so ~1 OR -2

= -1. The bit complement of sixteen zeros is sixteen ones, which is the two's
complement representation of -1. i

NOT X=-(X+1) The two's complement of any integer is the bit complement plus one. .

1.8.4 Functional Operators

A function is used in an exg}ession tocall a predétermined oPeration that is to be performed on an
operand. EXBASIC has "intrinsic" functions that reside in the system, such as SQR (square
. root) or SIN (sine), All of EXBASIC's intrinsic functions ere described in Chapter 3. ;.

EXBASIC also allows "user defined” functions that are written by'the ﬁi;gférmner. ‘See DEF FN,
. Section 2.11, PEY S F SR R S L '

AN ey B e s

1.8.5 String Operations
Strings may be concatenated using + For example:

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$

30 PRINT "NEW " + A$ + B$
RUN : . :
FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that are ’used' with numbers:
= O <& > <= = ‘ ‘

String comparisons are made by taking one character at a time from each strine and comparing the
ASCII codes. If all the ASCII codes are the same, the strings are equal. If the ASCII codes
differ, the lower code number precedes the higher. If, during string comparison, the end of one
string is reached, the shorter string is said to be smaller. Leading and trailing blanks are
significant, -Examples: ,

HAA" < HABH

"FILENAME" = "FILENAME"

HX&H > NX#"

"CL " > "CL"

nkgtt > MRGH

"SMYTH" < "SMYTHE" \
B$ < "9/12/78" where B$ = "8/12/78" ‘ s

Thus, string comparisons can be used to test string values or to alphabetize strings, Al string
constants used in comparison expressions must be enclosed in quotation marks, _

1.9 INPUT EDITING

If an incorrect character is entered as a line is being typed, it can be deleted with the RUBOUT
key or with Control-H, Rubout surrounds the deleted character(s) with backslashes, while
echoing them back to the screen, Control-H backspaces over each character and’ erases it.
Once a character(s) has been deleted, simply continue typing the line as desired,

To delete a line that is in the process of being typed, type Control-U, A carriage return is
executed automatically after the line is deleted. : ‘

To correct program lines for a program that is currently inmemory, simply retype the line using the
same line number. EXBASIC automatically replaces the old line with the new line,

Mozée sophisticated editing capabilities are provided with the EDIT command. See EDIT, Section
2.16, v .

To delete the entire program that is currently residing in memory, enter the NEW command. (See
Section 2.41.) NEW is usually used to clear memory prior to entering a new program,

1.10 ERROR MESSAGES

If EXBASIC detects an error that causes program execution to terminate, an error message is
printed. For a complete list of EXBASIC error messages, see Appendix J,

CHAPTER 2
EXBASIC COMMANDS AND STATEMENTS

All of the EXBASIC commands and statements are described in this chapter. Each
description is formatted as follows: . ’ -

E ~ Format: -.Shows the correet format for the instruction. ' See below for format
. notation. ‘ ey ’
Versions: Lists the versions of EXBASIC in which the instruction is available
(cassette, disk or both), '
Purpose: Tells what the instruction is used for.
Remarks: Describes in detail how the instruction is used,
Example: Shows sample programs or program segments that demonstrate the use

of the instruction.

" : Format Notation : v .
Wherever the format for a statement or command is given, the following rules apply:

: ! 1. Items in capital letters must be input as shown.

i 2. Items in lower case letters enclosed in angle brackets (< >) are tobe supplied by the user..

i 3, Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square brackets (ie., commas, parentheses,
semicolons, hyphens, equal signs) must be included where shown,

5. Izﬁms 1foll)owed by an ellipsis (...) may be repeated any number of times (up to the length of
e line).

6. Items separated by a vertical bar {[) are mutually exclusive; chocse one.

2.1 AUTO

Format: : AUTO [dine number>[,<increment>]]

Versions: Ceassette, Disk .

Purpose: To generate a line number automatically after every carriage return.

Remarks: AUTOC begins numbering at <line number> and increments each subsequent line
number by <increment>. The default for both values is 10, If <line number) is
followed by a comma but <increment> is not specified, the last increment
specified in an AUTO command is assumed. |

If AUTO generates a line number that is already being used, an asterisk is
printed after the number to warn the user that any input will replace the
existing line, However, typing a carriage return immediately after the esterisk
saves the line and generates the next line number,

AUTO is terminated by typing Control-C, The line in which Control-C is typed
is not saved. After Control-C is typed, EXBASIC returns to command level,

Example: AUTO 100,50 Generates line numbers 100, 150, 200 ...
AUTO Generates line numbers 10, 20, 30, 40 ...

S wenpty A

2.2 CALL

Format:
Version: -
Purpose:

Remarks:

Example:

2.3 CHAIN

Format:
Version:
Purpose:

Remarks:
Example:

Example:

Example: -

Example:

Example:

o A Ly e Coie e L. : o e % -V;i‘ S el 53) i .
- CALL <varisble neme>[(<argument listy)] :** Piaeisys vu
i Cassette, Disk '+ %% Aieiman it Len

11

z e ‘l...' 14l

To cell an essembly langusge subroutine, uagel el

The CAi.L" statement is one way to transfer program fflow. io an assembly
language subroutine, (See elso the USR function, Section 3.40)

<variable neme> contains an address that is the starting point in memory of the

" -subroutine, <variable name> may not be an array varisble name, <argument

list> contains the arguments that are passed to the essembly language
subroutine, , :

The CALL statement gén'erates the same calling sequence used by Exidy's
FORTRAN, COBOL and BASIC compilers,

110 MYROUT=&HD000"
120 CALL MYROUT(IJ,K)

CHAIN [MERGE] <filename>[,[<line mmber exp>] [,ALL][,DELETE<range>]]
Disk 5
To call a program and pass veriables to it from the current prograr.

<fileneme> is the name of the program that is called. i g
CHAIN"PROG1" _

<line number exp> is a line number or an expression that evaluates to a line
number in the called program. It is the starting point for execution of the
called program. If it is omitted, execution begins at the first line,
CHAIN"PROG1",1000

dline mumber exp>'is not affected by a RENUM command.

With the ALL option, every variable in the current program is passed to the
calied program, = (But see the second NOTE.) If the ALL option Is omitted, the
current program must contain a COMMON statement to list the varisbles that
are passed. See Section 2.7.

CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a subroutine to be brought into the
BASIC program as an overlay, Thatis, a MERGE operation is performed with
the current Erogram and the called program. The called program must be an
ASCII file if it is to be MERGEd.

CHAIN"PROG1",,ALL

If you use the ALL option and omit <line number>, you must use an extra comma,

CHAIN MERGE"OVRLAY",1000

‘After en overlay Is brought in, it is usually desirable to delete it so that a new

overlay may be brought in. To do this, use the DELETE option.

Example:

Example:

NOTE:

NOTE:

2.4 CLEAR
Format:
Versions:

Purpose:

Remarks:

.- NOTE:

Examples:

2.5 CLCAD

Formats:

Version:
Purpose:

Remarks:

12

.CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

DELETE occurs before the MERGE, so that all the line numbers in the range to
be overlaid are first deleted. - §oa L0 T P

Agayin,l you may omit the <line number> option, but if you do, you must use two
commas, : L7 :

CHAIN MERGE"OVRLAYZ",,DELE’I‘E 1000-5000

The line numbers in <range> are affected by the RENUM command,

The BASIC compiler does not support the ALL, MERGE, and DELETE options to
CHAIN., If you wish to maintain compatibility with the BASIC compiler, it is
recgmmend that COMMON be used to pass variables and that overlays not be
used.

If the MERGE option is omitted, CHAIN does not preserve variable types or
user-defined functions for use by the chained program. That is, any DEFINT,

DEFSNG, DEFDBL, DEFSTR or DEF FN statement containing shared variables
must be restated in the chained program, : _

CLEAR [,[<expression1>][,<expression2>]]
Cassette, Disk

To set ell numeric variables tobzero and all string variables to null; and,
optionally, to set the end of memory and the amount of stack space.

<expressionl> is a memory location which, if specified, sets the highest location
available for use by EXBASIC. .

<expression2> sets aside stack space for BASIC. The default is 1000 bytes or
one-eighth of the available memory, whichever is smaller,

In grevious versions of EXBASIC, <expressionl> set the amount of string space,
and <expression2> set the end of memory. EXBASIC, relesse 5.0 and later,
allocates string space dynamically. An "Out of string space error" occurs only
if there is no free memory left for BASIC to use.

CLEAR '

CLEAR ,32768

CLEAR ,,2000 v i
CLEAR,32768,2000

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array named

Cassette

To load a program or an array from cassette tape into memory,

CLOAD executes a NEW command before it loads the program from cassette

tape, <(filename> is the string expression or the first character of the string
expression that was specified when the program was CSAVEd.

CLOAD? verifies tapes by comparing the prfogt;am currently in memory with the ..

file on tape that has the same filename, 1

: ey are the same, EXBASIC prints
Ok. If not, EXBASIC prints NO GOOD.

r

NOTE:

Example:

2.6 CIGCSE-

Version:

Purpose:

Remarks:

Example:

2.7 COMMON

Format:

Version:

Purpose:

Remarks:

Exeample:

13

CLOAD* loads a numeric array that has been saved on tape. The data on tape
is loaded into the array called <array name)> specified when the array was
CSAVE*ed° R E 5 clot o S4F ol TR At T Mt - =T

CLOAD and CLOAD? are always entered at éorrméhd’level as direct mode
commands, CLOAD* may be entered at command level or used as a Progdam
oaded,

kgl

" statement. Make sure the array has been DIMensioned before it is

EXBASIC always returns to command level after a CLOAD, CLOAD? or CLOAD*
is executed. Before a CLOAD is executed, make sure the cassette recorder is
properly connected and in the PLAY mode, and the tape is positioned correctly.
See also CSAVE, Section 2.9, : '

CLOAD and CSAVE are not included in the disk
versions of EXBASIC, s S

CLOAD "MAX2M it & . . oo
Loads file "MAX2" into memory,

~

CLOSE([[#)<file number>[,[#]<file number,..>]]
Disk
To conclude I/0 to a disk file,

<file number> is the number under whiéh the file was OPENed., A CLOSE with
no arguments closes all open files,

The association between a particular file and file number terminates upon

execution of a CLOSE. The file may then be reOPENed using -the same or a

?iilfferent file number; likewise, that file number may now be reused to OPEN any
. ,

A CLOSE for a sequential output file writes the final buffer of _6utput.

The END statement and the NEW command always CLOSE all disk files
automatically. (STOP does not close disk files,)

See Appendix B,

COMMON <list of variebles
Disk
To pass varisbles to a CHAINed program.

The COMMON statement is used in conjunction with the CHAIN statement,

COMMON statements may appear anywhere in a program, though it is

recommended that they appear at the beginning. The same variable cannot

appear inmore than one COMMON statement, Array varisbles are specified by

é%{anding "()" to the variable name, If all variables are to be passed, use
IN with the ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

L]
.
L]

2.8 CONT

Format:

Versionss

: Purpose:

Remarks:

Example:

2.9 CSAVE

Formats:

Version:

Purpose:

:Remarks:

See also CLOAD,

NOTE:

Example:

14

CONT

. Cassette, Disk ,

To continue pfbgram execution after a Control- C hés been typed, or a STOP or
END statement has been executed, . _ '

" Execution resumes at the point where the break occurred. If the break

occurred after a prompt from an INPUT statement, execution continues with the
reprinting of the prompt (? or prompt string). :

CONT is usually used in conjunction with STOP for debugging. When execution
is stopped, intermediate values may be examined and changed using direct mode
statements. = Execution may be resumed with CONT or a direct mode GOTO,
which resumes execution at ‘a specified line number, CONT may also be used to
continue. execution after an error.

CONT is invalid if the program has been edited during the break.

See example, Section 2.61, STOP.

CSAVE <string expressiond>
CSAVE* <array veariable name)

Cassette

To save the program or an array currently in memory on cassette tape.

Each program or array saved on tape is identified by a filename. When the
commard CSAVE <string expression> is executed, EXBASIC saves the program
currently in memory on tape and uses the first character in <string expression>
as the filename, <{string expression> may be more than one cheracter, but only
the first character is used for the filename,

When the command CSAVE* <array variable name> is executed, EXBASIC saves
the specified array on tape. The array mustbe a numeric array. The elements
of a multidimensionel array are saved with the leftmost subscript changing
fastest, * _

CSAVE may be used as a program statement or &s a direct mode command.

Before a CSAVE or CSAVE* is executed, make sure the cassette recorder is
properly connected and in the RECORD mode, N

Section 2.5.

CSAVE and CLOAD sare not included in the disk
implementations of EXBASIC.

CSAVE "TIMER®

Saves the program currently in memory on cassette under filename "™,

2.10 DATA

Format:

Versionss

Purpose:

Remerks:

Example:

2.11 DEF FN
Format:
Versions:
Purpose:

Remarks:

DATA dlist of constants>
Cassette, Disk

To store the numeric and string constants that are accessed by the program's
READ statement(s). (See y Section 2.54) . 7. | -

DATA statements are nonexecutsble and may be placed anywhere in the
rogram. A DATA statement may contain as many constants as fit on a line
separated by commas), and any mumber of DATA statements may be used in a

program. The READ statements access the DATA statements in order (by line

‘ot 1.

‘number) and the data contained therein may be thought of as one continuous list

of items, regardless of how many items are on a line or where the lines are

: plac_:ed n the-program,

<list of constants> may contain mmeric constants in any format, i.e., fixed
oint, floating point or integer. (No numeric expressions are allowed in the
ist.) String constants in DATA statements must be surrounded by double

quotation marks only if they contain commas, ecolons or significant leading or
trailing spaces. Otherwise, quotation marks are not needed,

The variable type (numeric or string) %1

u ven in the READ statement must agree
with the corresponding constant in t

e DATA statement,

DATA statements may be reread from the beginning by use of the RESTORE
statement (Section 2.57). ,

See examples in Section 2.54, READ,

DEF FN<name>[(<parameter list>)]=<function definition>
Cassette, Disk B

To define and name a function that is written by the user.

<name> mustbe a legal variable name. This name, preceded by FN, becomes the
name of the function, <parameter list> is comprised of those varisble names in
the function definition that ere to be replaced when the function is called.
The items in the list are separated by commas. <function definition> is an
expression that performs the operation of the function. It is limited to one
line, Variable names that appear in this expression serve only to define the
function; they do not affect program variables that have the same name. A
verigble name used in a function definition may or may not appear in the
arameter list, . If it.does,- the value-of -the parameter is supplied when the
unction is called. Otherwise, the current value of the varisble is used,

The veriebles in the parameter list re resent, on a one-to-one basis, the
argument varisbles or values that will be given in the function ecall.

User—defined functions may be numeric or string, If a type is specified in the
function name, the value of the expression is forced to that type before it is
returned to the calling statement. If a type is specified in the function name
and the argument type does not match, a "Type mismatch” error oceurs.

A DEF FN statement must be executed before the function it defines may be

called. If afunction is called before it has been defined, an "Undefined user
function” error occurs, DEF FN is illegal in the direct mode.

410 DEF FNAB(X,Y)=X"3/Y"2

. 420 T=FNAB(I,J)

Line 410 defines the function FNAB. The function is called in line 420,

You must use the space between DEF and FN,

2.12 DEFINT/SNG/DBL/STR

Format:
Versions:

Purpose:

Remai‘ks:

Examples:

2.13 DEF USR

Format:
Versions:
Purpose:

Remarks:

Example:

2.14 DELETE
Format:
Versions:
Purpose:

Remarks:

16

DEF<type> <range of letters> .
where <type> is INT, SNG, DBL, or STR

: Cassette;' Disk

To declere variable types as‘lntéger, single
precision, double precision, or string,

A DEFtype statement declares that the variable names beginning with the
letter(s) specified will be that type variable., However, a type declaration
chag’al;:lter always takes precedence over a DEFtype statement in the typing of a
variabie, ') ‘)

If no type decleration statements are encountered, EXBASIC assumes ail
varigbles without declaration characters are single precision variebles,

10 DEFDBL L-P

All variables beginning with the letters L, M, N, O, and P will be double
precision variables.

10 DEFSIR A
All variables beginning with the letter A will be string variables.

10 DEFINT I-N,W-Z :
All variables beginning with the letters1,J, K, L, M, N, W, X, Y, Z will
" be integer variables. .

DEF USR[<digit>]=<integer expression>
Extended, Disk : ,
To specify the starting address of an assembly languasge subroutine,

<digit> may be any digit from 0 to 9. - The digit corresponds to the number of
the USR routine whose address is being specified, If <{digit> is omitted, DEF
USRO is assumed. The value of <integer expression> -is the starting address of
the USR routine. See Appendix C, Assembly Language Subroutines.

Any number of DEF USR statements may appeer in a program to redefine
subroutine starting addresses, thus allowing access to as many subroutines as
necessary. : ,

200 DEF USR0=24000
210 X=USRO(Y"2/2.89)

DELETE([<line number>][-<line number>]
Extended, Disk .
To delete program lines,

EXBASIC always returns to command level after a DELETE is executed. If
<line number> does not exist, an "Illegal function call™ error occurs.

a o lageaee o

T
S

LA kAl
|

.~ Format:

Versions:
Purpose:

Remarks:

Example:

2.16 EDIT

Format:
Versions:
Purpose:

Remarks:

DELETE-40

17

_DELETE 40 Deletes line 40
- DELETE 40~100

Deletes lines 40 through 100, incluslve g
" Deletes ¢

20,

[P TS e % g e Rt 'g}l{"'{.‘.’l’.ﬂ:‘:’&' S THE T R o
all lines up to and including line 40 ™
BT Ll s peliet i {, ’

8 e

ER RS SR

PRI Se e e

DIM (list of subscribted veariables)
Cassette, Disk

To specify the maximum values for array variable subseripts and allocate
storege accordingly, - b : .

If an array variable name is used without a DIM statement, the maximum value of
its subseript(s) is assumed tobe 10. If a subscript is used that is greater than
the maximum specified, a "Subseript cut of range" error oceurs. The minimum
value for a subscript is always 0, unless otherwise specified with the OPTION
BASE statement (see Section 2.46), ; : :

The DIM statement sets all the elements of the specified arrays to an initial

+

value of zero.

10 DIM A(20)

20 FOR I=0 TO 20
30 READ A(I)

40 NEXT I

EDIT <line number> . ' =
Cassette, Disk , o
To enter Edit Mode at the specified line, .
In Edit Mode, it is possible to edit portions of a line without retyping the entire
line, Upon entering Edit Mode, EXBASIC types the line number of the line to
be edited, then it types a space and waifs for an Edit Mode subcommand,
'Edit Mode Subcommands :
Edit Mode subcommands are used to move the cursor or to insert, delete,
replace, or search for text within a line, The subecommands are not echoed,
Most of the Edit Mode subcommands may be preceded by an integer which causes
the command to be executed that number of times. When & preceding integer is
not specified, it is assumed to be 1.

Edit Mode subcommands may be categorized according to the following
functions: :

1. Moving the cursor
2. Inserting text
3. Deleting text

4, Finding text

S. Replacin'g text
6. Ending and restarting Edit Mode

TS

- - \ : 18 .

. In the descriptions that follow, <ch> represents any character, <{text>

represents a string of characters of arbitrary length, [i] represents an optional
, , - integer (the default is 1), and $ represents'the ESCAPE key. (The expression
PR "type Escape™ means the same as "press the ESCAPE key," while "type Carriege
i : Return" is the same, of course, as ™hit the CARRIAéE RET key."

1. Moving the Cursor
b - ’ Space Use the space bar to move the cursor to the right. [i]Space moves the cursor i
spaces to the right. Characters are printed as you space over them,

Rubout In Edit Mode, [i]JRubout moves the cursor i spaces to the left (backspaces).
, Characters are printed as you backspace over them,

2. Inserting Text |

1 I<text>$ inserts <text> at the current cursor position. The inserted

characters are printed on the terminal. To terminate insertion, type Esecape.
! ‘ If a Carriage Return is typed during an Insert command, the effect is the same
i 8s typing Escape and then Carriage Return, " “-During an Insert command, the
Rubout key on the terminal may be used to delete characters to the left of the
cursor, If an attempt is made to .insert a character that will make the line
longer than 255 characters, the character is not printed.

X The X subcommand is used to extend the line. X moves the cursor to the end of
the line, goes into insert mode, and allows insertion of text as if an Insert
command had been given, When you are finished extending the line, type
Escape or Carrisge Return.

3. Deleting Text

/ D [i]D deletes i characters to.the right of the cursor. The deleted characters

e are echoed between backslashes, and the cursor is positioned to the right of the
last character deleted. = If there are fewer than i characters to the right of the
cursor, iD deletes the remainder of the line, -

H H deletes all characters to the right of the cursor and then automatically enters
insert mode, H is useful for replacing statements at the end of a line,

4, Finding Text

S The subcommand [i]S<ch> searches for the ith occurrenee of <ch> and positions
the cursor before it. The character at the current cursor position is not
included in the search, If <ch> is not found, the cursor stops at the end.of the
line. All characters passed over during the search are printed. -

-t .

K The subcommand [i]R<eh> is similar to [i]S<eh>, except all the characters
passed over in the search are deleted. The cursor is positioned before <eh>,
and the deleted characters are enclosed in backsiashes.

5. Replacing Text
c The subcommand C<ch> changes the next character to <ch>. If you wish to
change the next i characters, use the subcammand iC, followed by i characters.
After the ith new character is typed, change mode is exited and you return to
Edit Mode.
; 6. Ending and Restarting Edit Mode

: <erd> Typing Carriage Return prints the remainder of the line, saves the changes you
‘ made and exits Edit Mode, :

E The E subcommand has the same effect as Carriage Return, except the
remainder of the line is not printed,

=~

19

Q The Q subcommand returns to EXBASIC command level, without saving any of the
‘changes that were made to the line during Edit Mode.

L The L subcommand lists the remainder of the line (éaving any changes made so
far) and repositions the cursor at the beginnin% of the line, still in Edit Mode,
L is usually used to list the line when you first enter Edit Mode,

A , The A subcommand lets gou bégin editing a line over again, It restores the
~original line and repositions the cursor at the beginning, ,

NOTE

If EXBASIC receives an unrecognizable command or illegal character while in
Edit Mode, the command or character. is ignored., -

Syntax Errors

When a Syntax Error is encountered during execution of a program, EXBASIC
autan?tically..entersmEdit Mode - at the line that caused the error. For
examples o . : '

10 K = 2(4)
RUN

?gyntax error in 10
1

When you finish editing the line and type Carriage Return (or the E
subcommand), EXBASIC reinserts the line, which causes all varisble values to
be lost, To preserve the variable values for examination, first exit Edit Mode
with the Q subcammand., EXBASIC returrs to command level, and all varisble
values are preserved, o

Control-A

To enter Edit Mode on the line you are currently typing, type Control-A.
EXBASIC responds with a carr'a§e return, an exclamation point 8) and & space,
The cursor is positioned at the first character in the line. . Proceed by typing
an Edit Mode subcommand, : ‘

NOTE

Remember, if you have just entered a line and wish to go back and edit it, the
command "EDIT ." enters Edit Mode at the current line. The space is required,
(The line number symbol "," always refers to the current line,)

2.17 END...

Format: END

Versions: Cassette, Disk -

Purpose: To terminate program execution, close all files and return to command level,
Remarks: END statements may be placed anywhere in the program to terminate execution,

Unlike the STOP statement, END does not cause a BREAK message to be printed.
An END statement at the end of a program is optional, EXBASIC always
returns to command level after an END is executed,

Example: 520 IF K>1000 THEN END ELSE GOTO 20

the value of <integer expression> equals an error code already in use by
EXBASIC (see Appendix F), the ERROR statement will simulate the occurrence
%f thalt tirx;or, and the corresponding error message will be printed. (See
xample 1. :

.
| " (3
2.18 ERASE :
'
Format: “ " ERASE (list of array variables>
4 - Versions: = ' -, Cassette, Disk Z,
Purpose: ~ - To eliminate arrays from a program.
; Remarks: .. Arrays may be redimensioned after they are ERASEd, or the previously
N allocated array space in memory may be used for other purposes. If an attempt
& . is made to redimension an array without first ERASEing it, & "Redimensioned
: array" error oceurs,
NOTE: The EXBASIC compiler does not support ERASE.
Example: .
450 ERASE A,B
460 DIM B(99)
O | R 2.19 ERR AND ERL VARIABLES - ; .
' { ; When an error handling subroutine is entered, the variable ERR contains the
i error code for the error, and the variable ERL contains the line number of the
line in which. the error was detected. The ERR and ERL variables are usually
: - ‘used in IF . . THEN statements to direct program flow in the error trap routine.
- If the statement that caused the error was a direct mode statement, ERL will
: contain 65535. To test if an error occurred in a direct statement, use IF 65535
b = ERL THEN ... otherwise, use ‘
IF ERR = error code THEN . . .
‘ IF ERL = line number THEN . .. v
If the line number is not on the right side of the relational operator, it cannot
5 be renumbered by RENUM. Because ERL and ERR are reserved variables
neither may appeer to the left of the equal sign in a LET (assigrmentf
statement. EXBASIC's error codes sare listed in Appendix F.
k 2.20 ERROR |
i ‘ Format: ERROR <integer expression>
; Versions: Cassette, Disk 7 » .
f Purpose: 1) To simulate the occurrence of an EXBASIC error; or 2) to allow error’codes
! to be defined by the user.
Remarks: The value of <integer expression> must be greater than 0 and less than 255, If
13

L To define your own error code, use & value that is greater than any used by
EXBASIC's error codes, (It is preferable to use the highest available values,
so compatbility may be maintained when more error codes are added to
EXBASIC.) This user-defined error code may then be conveniently handled in
an error trap routine. (See Example 2.) »

‘ If an ERROR statement specifies a code for which no error message has been
i defined, EXBASIC responds with the message UNPRINTABLE ERROR.

: Execution of an ERROR statement for which there is no error trap routine
I causes an error message to be printed and execution to halt, 52

i ’ .
| ®

Ceaan

Example 1:

Example 2:

2.21 FIELD

Format:
Version:
Purpose:

Remarks:

Example:
NOTE:

21

LIST

10 S =10

20T =5 ‘ L
30 ERROR S + T e o i R ER
40 END ;
Ok ..
RUN .
String too long in line 30 -

Or, in direct mode:

ok
ERROR 15 }gou type this line)
%it(ring too long (EXBASIC types this line)

110 ON ERROR GOTO 400 :
120 INPUT "WHAT IS YOUR BET™B -
130 IF B > 5000 THEN ERROR 210 , .

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

FIELD[#]<file number><field width> AS <string veriable> . . .
Disk
To allocate space for variables in a random file buffer.

To hget data out of a random buffer after a GET or to enter data before aPUT, a
FIELD statement must have been executed,

<file number> is the number under which the file was OPENed. <field width> is
the number of characters to be allocated to <string variebled."

For example,
FIELD 1, 20 AS N$, 10 AS ID$, 40-AS ADDS$.

allocates the first 20 positions (bytes) in the randam file buffer to the string
variable N$, the next 10 positions to ID$, and the next 40 positions to ADDS,
FIgLD do)es NOT place any data in the random file buffer. (See LSET/RSET
and GET. ,

The total number of bytes allocated in a FIELD statement must not exceed the
record length that was specified when the file was OPENed, Otherwise, a
"Field overflow™" error occurs, (The default record length is 128.)

Any number of FIELD statements may be executed for the same file, and all
FIELD statements that have been executed are in effect at the same time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT or LET statement. Once a
variable name is FIELDed, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable's pointer is moved to string space,

22 .

2.22 FOR...NEXT

Format: FOR <veriabled>=x TO y [STEP z]

NEXT [<veriable>][,{variable> o « «]

where X, y and z are numeric expressions,

Versions: Cassette, Disk
" Purpose: To allow a series of instructions to be performed in a loop a given number of
times,
" Remarks: <variable> is used as a counter. The first numeric expression (x) is the initial

value of the counter, The second numeric expression (y) is the final value of the
counter. The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is incremented by the
amount specified by STEP, A check is performed to see if the value.of the
counter is now greater than the final value (y), If it is not greater, EXBASIC
branches back to the statement after. the FOR statement and the process is
repeated, If it is greater, execution continues with the statement followi .
the NEXT statement. This is a FOR .. . NEXT loop. ~ If STEP is not specified,
the increment is assumed to be one, ' If STEP is negative, the final value of the
counter is set to be less than the initial value. The counter is decremented
each time through the loop, and the loop is executed until the counter is less
than the final velue,

. The body of thé loop is skipped if the initial value of the loop times the sign of
T the step exceeds the final value times the sign of the step.

Hested Loops

FOR . . .NEXT loops may be nested, that is, a FOR . . .NEXT loop may be placed
within the context of another FOR .. .NEXT loop. When loops are nested, each
loop must have a unique varisble name as its counter. The NEXT statement for
the inside loop must appear before that for the outside loop, If nested loops
i have the same end point, a single NEXT statement may be used for all of them.

The varigble(s) in the NEXT statement may be omitted, in which case the NEXT
statement will mateh the most recent FOR statement, If a NEXT statement is
encountered before its corresponding FOR statement, a "NEXT without FOR"
error message is issued and execution is terminated.

! Exeample 1: 10 K=10 ; ‘ . .
B 20 FOR I=1 TO K STEP 2
: : 30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN
1 20
3 30
5 40
i 7 50
A 9 60
2 : Ok

! Example 2: 10 J=0

. 20 FOR I-1 TO J
30 PRINT I

40 NEXT I

In this example, the loop does not execute because the initial value of the loop
exceeds the final value,

] : .

5o

Example 3:

Example 4:

2,23 GET

Format:
Version:
Purposes

Remarks:

Example:

23

10 I=5

20 FOR I=1 TO I+5
30 PRINT I; |
40 NEXT = B S
RUN A
123456717289 10

Ok

In this example, the loop executes ten times, The final value for the loop
varigble is elways set before the .initial value is set., (Note: Previous
versions of EXBASIC set the initial value of the loop variable before setting
the final value; i.e., the above loop would have executed six times.)

10 FOR X=1 TO 3
20 FOR Y=4 TO 6

30 PRINT X;Y;

40 NEXT Y,X s]
RUN s

141516 2425263437536

GET [#])<file number>[,{record number>]

Disk

To read a record from a random disk file into a random buffer.

<file number> is the number under which the file was OPENed., If <record

number> is omitted, the next record (after the last GET) is read into the buffer,
The largest possible record number is 32767.

- See Appendix B.

2.24 GOSUB...RETURN

Format:
Versions:

Purpose:

Remarks:

Example:

GOSUB <line number)

" RETURN

8K, Extended, Disk
To branch to and return from a subroutine,

dline number) is the first line of the subroutine, A subroutine may be called
any-number-of-times-in a program, and a subroutine may be called from within
another subroutine, Such nesting of subroutines is limited only by available
memory.

The RETURN statement(s) in a subroutine cause EXBASIC to branchback to the
statement following the most recent GOSUB statement. A subroutine may
contain more. than one RETURN statement, should logic dictate a return at

. different points-in the subroutine. Subroutines may appear anywhere in the

rogram, but it is recommended that the subroutine be readily distinguishable

‘Irom the main program. To prevent inadvertant entry into the subroutine, it

may be preceded by a STOP, END, or GOTO statement that directs program
control around the subroutine,

10 GOSUB 40

- 20 PRINT "BACK FROM SUBROUTINE"

30 END

40 PRINT "SUBROUTINE";

S0 PRINT ™ IN";

60 PRINT " PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS
gﬂCK FROM SUBROUTINE

2,25 GOTO

Format:
Versions:

Purpose:

Remarks:

Example:

24

GOTO (line number)>
Cassette, Disk

To branch unconditionally out of the normal program sequence to a specified

.- line number,

If <line number> is an executable statement, that statement and those following
are executed, If it is a nonexecutable statement, execution proceeds at the
first executable statement encountered after <line number>.

LIST
10 READ R :
20 PRINT "R ="R,
30 A = 3.14%R*2

40 PRINT "AREA ="A

S0 GOTO 10

60 DATA 5,7,12

Ok

RUN

R =4 AREA = 78.5
R=17 ARFA = 153.86
R =12 - ‘AREA = 452,16
‘?Di)ut of data in:10

2.26 IF...THEN[...ELSE] AND IF...GOTO B

Format:
Format:

Versions:

Purpose:

Remarks:

IF <expression> THEN <statement(s)> | <line number>
[ELSE <statement(s)> | <line number>]

IF <expression> GOTO <line number>

[ELSE <statement(s)> | <line number>]

Cassette, Disk

To make a decision regarding program flow based on the result returned by an
expression,

If the result of <{expression> is not zero, the THEN or GOTC clause is executed.
THEN may be followed by either a line number for branching or one or more
statements to be executed, GOTO is always followed by a line number. :If the
result of <expression> is zero, the THEN or GOTO clause is ignored and the ELSE
clause, if present, is executed. Execution continues with the next execiitable
statement. You may use a comma before THEN.

Nesting of IF Statements

IF...THEN...ELSE statements may be nested. Nesting is limited only by the
length of the line. For example

IF X>Y THEN PRINT "GREATER" EISE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not contain the same number of
ELSE and THEN clauses, each ELSE is matched with the closest unmatched
THEN. For example '

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "AOC" when A<B,

NOTE:

Example 1:

Example 2:

Example 3:

2.27 INPUT

Format:
Versions:
Purpose:

Remarks: -

Bk

25

If an IF...THEN statement is followed by a line mumber in the direct mode, an

"Undefined line" error results unless a statement with the specified line number

has previously been entered in the lndireqt mode, ;-

y g ey hes
R A A A

When using IF to test e?:xality for a value that is the result of a floating point
computation, remember that the internal representation of the value may not be
exact, Therefore, the test should be against the range over which the
accuracy of the value may vary. For example, to test a computed veriable A
against the value 1.0, use: ~ . '

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less than
loOE-so N =

200 IF I THEN GET#L,1 | -
This statement GETs record number I if I is not zero,

100 IF(IQO)‘(I)IO) 'l'HEN'DB=1979—1.:GOIb 300
110 PRINT "OUT OF RANGE" S

In this example, a test determines if I is greater than 10 and less than 20, If1l
is in this range, DB is calculated and execution branches to line 300, Iflis
not in this range, execution contimes with line 110,

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or theline

printer, depending on the value of a varisble (IOFLAG, If -IOFLAG is zero,
output goes to the line printer, otherwise output goes to the temminal,

INPUT([;1[<"prompt string™>;]dlist of variables>
8K, Extended, Disk

To allow input from the terminal during program execution.

‘When en INPUT statement is encountered, program execution pauses. and a

question mark is printed to indicate the program is waiting for data. If
<"prompt string™>-is included, the string is printed before the question mark.,
The required-data is then entered at the ‘terminal,

If INPUT is immediately followed by a semicolon, then the cm;ria%e return typed
by the user to input data does not echo a carrigge return/line feed sequence,

The data that is entered is assigned to the variable(s) given in <veriable list>,
The number of data items supplied must be the same as the mmber of variables in
the list, Data items are separated by commas.

The variable names in the list may be numeric or string variable names (including
subseripted variables). The type of each data item that is input must agree
with the type specified by the varieble name. (Stri input to an INPUT
Statement need not be surrounded by quotation marks.

Responding to INPUT with too many or too few items, or with the wrong type of
value (numeric instead of string, ete.) causes the messsage "?Redo from start”
to be printed, No assignment of input values is made until an acceptable
response is given,

Examples:

2.28 INPUT #

Format:
Version:

Purpose:

Remarks:

Example:

26

10 INPUT X
20 PRINT X "SQUARED IS" X"2

*30 END

RUN : ~ ’
? 5 (The 5 wes typed in by the user in response to the question mark.)
5 SQUARED IS 25 T

- Ok

..10:PI=3.14

20 INPUT "WHAT IS THE RADIUS™;R

30 A=PI*R"2

40 PRINT "THE AREA OF THE CIRCLE IS™A -
50 PRINT ; '
60 GOTO 20

Ok 2

RUN ~ ‘ ,
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
ete,

INPUT#<file numberd>,{veriable list>
Disk :

To read data items from a sequential disk file and assign them to program
variables., ' ‘ ; ;

<file number)> is the number used when the file was OPENed for input.
<varieble list> contains the variable names that will be assigned to the items in
the file. (The variable type must match the type specified by the variable
name,) With INPUT#, no question mark is printed, as with INPUT.

The data items in the file should appear just as they would if data were beirig

typed in response to an INPUT statement, With numerie velues, leading spaces,

_ carriage returns and line feeds are ignored. The first character encountered

that is not a space, carriage return or line feed is assumed to be the start of a
number.- The number terminates on a space, carriage return, line feed or
comma, S ‘

If EXBASIC is scanning the sequential data file for a string item, leading
spaces, carriege returns and line feeds are also ignored. The first character
encountered that is not a space, carriage return, or line feed is assumed to be
the start of astring item, If this first character is a quotation mark ("), the
string item will consist of all characters read between the first quotation mark
and the second. Thus, a ctxoted string may not'contain'a quotation mark as a
character. If the first ¢

string is an unquoted string, and terminates on a comma, carriage or line feed
(or after 255 characters have been read). If end of tile is reached when a
mumerie or string item is being INPUT, the item is terminated.

See Appendix B.

aracter of the strirg is not a quotation mark, the -

2.29 KILL

Format:
Version:
Purpose:

Remarks:

Example:

27

KILL <filename> L3
To delete a file from disk,

If a KILL statement is given for a file that is currer‘xwﬁy CPEN, a "File already
open" error occurs,

KILL is used for all types of disk files: program files, random data files and
sequential data files, and also anmy CP/M file, :

<filename> must include the file type extension,
200 KILL "DATA1.BAS"

See also Appendix B,

2.30 LET
Format:
Versions:
Purpose:

Remarks:’

Example:

[LET] <vhriab1e>=<exprasion> %
Cassette, Disk ,

To assign the value of an expression to a variable,

Notice the word LET is optional, Le., the equal sign is sufficient when assigning
an expression to a varisble name,

110 LET D=12

-~ 120 LET E=12#E94/2

130 LET F=12"4
140 LET SUM=D+E+F

or ’ _ ' ™

110 D=12

120 E=12"2
130 F=12"4
140 SUM=D+E+F

2.31 LINE INPUT- -

Format:
Versions:

Purpose:

Remarks:

Example:

LINE INPUT(;][<"prompt string">;I<string variable>
Cassette, Disk

To input an entire line (up to 254 characters) to a string veriable, without the
use of delimiters.,

The prompt string is a string literal that is printed at the terminal before input
is accepted. A question mark is not printed unless it is part of the prompt
string. ~All input from the end of the prompt to the carriage return is assigned
to <string variable>, ' '

If LINE INPUT is immediately followed by a semicolon, then the earriage return
typed by the user to end the input line does not echo a carriage return/line feed
sequence at the terminal,

A LINE INPUT may be escaped by typing Control- C. EXBASIC returns to
;:I%mand level and types Ok. Typing CONT resumes execution at the LINE
Url)

See Example, Section 2.32, LINE INPUTH.

23008 mem it s

28 ' ‘

2.32 LINE INPUT #

Format: LINE INPUT #<file number>,{string variable>
Version: Disk -
Purpose: To read an_entire line (up to 254 characters), without delimiters, from a

sequential disk data file to a string varisble,

Remarks: <file number> is the number under which the file was OPENed. <string

veriable> is the variable name to which the line will be assigned. LINE

4 INPUT# reads ell characters in the sequential file up to a carriage return. It

{1 then skips over the carriage return/line feed sequence, and the next LINE

RS | i INPUT# reads all characters up to the next carriage return, (If a line
| feed/carriege return sequence is encountered, it is preserved.)

Lat ' LINE INPUT# is especially useful if eachline of a data file has been broken into
' tields, or if a EXBASIC program saved in ASCII mode is being read as data by
another program, o

: Example: 10 OPEN "O",1,"LIST" : ’
o 20 LINE INPUT "CUSTOMER INFORMATION? ™;C$
. 30 PRINT #1, C$, ®
i 40 CLOSE 1 -
o . 50 OPEN "I",1,"LIST" >
1 ' 60 LINE INPUT #1, C$

f 70 PRINT C$

- 80 CLOSE 1
N e RUN

CUSTOMER INFORMATION? LINDA JONES 234,4

e 2.33 LIST
Y Format 1: LIST [<line number)>]
Versions: - Cassette, Disk
Format 2: LIST [<line number>[~-[<line number>]]]
Versions: Cassette, Disk
Purpose: To list all or part of the progrem currently in memory at the terminal.
Remarks: EXBASIC always returns to command level after a LIST is executed.

Format 1: If <line number) is omitted, the program is listed beginning at the
lowest line number. (Listing is terminated either by the end of the program or
by typing Control-C.) If <line number> is included, the 8K version will list the
%x;ogram beginning at that line; and the Extended and Disk versions will list-only

e specified line, i
Format 2: This format allows the following options:

' 1. Ilf only the first number is specified, that line and all higher-nwnbefed lines are
& isted.

2. If only the second number is specified, all lines from the beginning of the
program through that line are listed,

' 3. If both numbers are specified, the entire range is listed.

Examples: Format 1:
¥ 'LIST Lists the program currently in memory.
LIST 500 Lists line 500.

L

Format 2:

LIST 150~ Lists all lines from 150 to the end,

LIST -1000 Lists all lines from the lowest number through 1000, -
LIST 150-1000 Lists lines 150 through 1000, inclusive.

2.34 LLIST

Format: LLIST [<line number>[-[<line number>]]]

Versions: 'Cassétte, Disk

Purpose: To list all or part of the program currently in memory at the line printer.

Remarks: LLIST assumes a 132-character wide printer. EXBASIC always returns to

command level after an LLIST is executed, The options for LLIST are the same
es for LIST, Format 2, = S <

Examples See the examples for LIS'I’, Format 2,°

2.35 LOAD

Format: : | LOAD <filename>[,R]

Version: Disk

Purpose: To load a file from disk into memory.

Remarks: ~(filename> is the name that wes used when the file was SAVEd. (With CP/M,
the default extension .BAS is supplied,) LOAD closes all open files and deletes
all variables and program lines currently residing in memory before it loads
the designated program, However, if the "R" option is used with LOAD, the
Erogram is RUN efter it is LOADed, and all open data files are kept open, 'i‘hus,

- LOAD with the "R" option may be used to chain several programs (or segments of

the same program). Information may be passed between the programs using
their disk data files, ; : : '

Example: LOAD "STRTRK",R

2.36 LPRINT AND LPRINT USING

Format: - LPRINT. [<list. of. expressions>] .-

LPRINT USING <"format string™>;<list of expressions>

Versions: Cassette, Disk

Purpose: To print data at the line printer,

Remarks: Same as PRINT and PRINT USING, except output goes to the line printer, See
Section 2.49 and Section 2.50,

LPRINT assumes a 132-character-wide printer,

i S B8 pone v e]

5
ol
18
!
AL
Wi
!
vl
.
2

30

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

2,38 MERGE
Format:
Version:
Purpbse:

Remarks:

Example:

2.39 MID$

Format:

Versions:
Purpose:

Remarks:

- LSET <string variable>

= <string expression>
RSET <string variable> = <string expression>

Disk @ = .= ¢ " .nc

To move data from memory to a random file buffer (in preparation for a PUT
statement), . S

If {string expression> requires fewer bytes than were FIELDed to <string
variable>, LSET left-justifies the string {n the field, and RSET right~justifies
the string, (Spaces are used to pad the extra positions.) If the string is too
long for the field, characters are dropped from the right., Numeric values must
be converted.to strings before they are LSET or RSET. See the MKI$, MKSS$,
MKD$ functions, Section 3.25. T) :

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See 'aJso Appendix B,

LSET or RSET may also be used with a non- fielded string variable to left-
justify or right-justify a string in agiven field. For example, the program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20~character field, This eanbe very handy for
formatting printed output,

MERGE <filename>

Disk)

To merge a specified disk file into the program currently in memory,
<filename> is the name used when the file was SAVEd. (With CP/M, the default
extension .BAS is supplied.) The file must have been SAVEd in ASCII format.
(If not, a "Bad file mode™ error occurs,)

If any lines in the disk file have the same line numbers as lines in the program in
memory, the lines from the file on disk will replace the corresponding lines in
memory. (MERGEing may be thought of as "inserting" the program lines on disk
into the program in memory.)

EXBASIC always returns to command level after
executing a M RGE command.

MERGE "NUMBRS"

MID$(<string exp1>,n[,m])=<string exp2>

where n and m are integer expressions and <string expl> and {string exp2> are
string ‘expressions,

Cassette, Disk
To replace a portion of one string with another string,

The characters in <string expl>, beginning at position n, are replaced by the-
characters in <string exp2>, The optional m refers to the number of characters
from <string exp2> that will be used in the replacement. If m is omitted, all of
{string exp2> is used. However, regardless of whether m is omitted or
included, the replacement of characters never goes beyond the original length

of <string expld.

o o R

Example:

2.40 NAME

Format:
Version:
Purpose:

Remarks:

Exemple:

2.41 NEW
Format:
Versions:
Purpose: '

Remarks:

2,42 NULL

Versions:
Purpose:

Remarks:

Example:

31
10 A$="KANSAS CITY, MO"

20 MID$(A$,14)="KS"
30 PRINT A$

RUN | RTEREET
KANSAS CITY, KS e IR

* MID$ may also be used es a function that returns a sdl;string of a given string,

See Section 3.24.

AT

NAME <old filename> AS <new filename)

Disk . : '

To change the name of a disk file.

<old filename> must exist and <new filename> must not exist; otherwise an error
will result. After a NAME command, the file exists on the same disk, in the
same area of disk space, with the new name. o

Ok :

gﬁME "ACCTS" AS "LEDGER"

In this example, the file that was formerly named ACCTS will now be named
LEDGER. '

NEW
Cassette, Disk
To delete the program currently in memory and clear all variables,

NEW is entered at command level to clear memory before entering a new

program. EXBASIC always returns to command level after a NEW is executed,

Cassette, Disk

~ To set the number of nulls to be printed at the end of each line.

For 10-character-per-second tape punches, <integer expression> should be
>=3. When tapes are not being punched, <integer expression> should be 0 or
1 for Teletypes- and Teletype- compatible CRTs. <integer expression> should
be 2 or 3 Tor 30 eps hard copy printers. The defsult value is 0.

Ok
NULL 2
Ok ;

100 INPUT X
200 IF X<50 GOTO 800 ..

Two null characters will be printed after each line.

i 32
2.43 ON ERROR GOTO

Format: ‘ON ERROR GOTO <line number>

Versions: Cassette, Disk = 5 s

'mwose:) 'Is‘lc:br%leatlleé. error trapping and specify the fi;st I‘i?e of the error handling
Remarks: " Once error trapping has been enabled all errors détected; including direct mode

errors (e.g., Syntax errors), will cause a jump to the specified error handling
subroutine. If <line number> does not exist, an "Undefined line" error results.
To diseble error trapping, execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution. An ON ERROR GOTO 0 statement
that appears in an error trapping subroutine causes EXBASIC to stop and print
the error message for the error that caused the trap. It is recommended that
all error trapping subroutines execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

NOTE: -+ If an error occurs during execution of an error handling subroﬁtine, the BASIC
error message is printed and execution terminates. Error trapping does not
- occur within the error handling subroutine, : =

Example: 10 ON ERROR GOTO 1000

2.44 ON...GOSUB AND ON...GOTO

Format: . - ON <exp;éssion§ GOTO <list of line numbers>
" ON <expression> GOSUB <list of. line numbers>

Versions: Cassette, Disk

L Purpose: To branch to one of several specified line numbers, depending on the value
i returned when an expression is evaluated, :

Remarks: - The value of <{expression> determines which line number in the list will be used
for branching, For example, if the value is three, the third line number in the
list will be the destination of the branch. (If the value is a non-integer, the
fractional portion is rounded.) In the ON...GOSUB statement, each line number
in the list must be the first line number of a.subroutine.

If the value of <expression> is negative, zero or greater than the number of
items in the list, an "Illegal function call™ error occurs.

Example: 100 ON L-1 GOTO 150,300,320,390

l 2.45 OPEN
Format: OPEN <mode>,[#]<file number>,{filename>,[<r eclen>]
Version: Disk
Purpose: To -allow 1/0 to a disk file.

a Remarks: A disk file must be OPENed before any disk 1/0 operation can be performed on

i that file. OPEN allocates & buffer for I/0 to the file and determines the mode
of access that will be used with the buffer,

<mode> is a string expression whose first character is one of the following:
(0] specifies sequential output mode
¥ , I specifies sequential input mode

R specifies random input/output mode

NOTE:

“xamples

33

<file number) is an integer expression whose value is between one and fifteen.
The number is then associated with the file for as long as it is OPEN and is used
to refer other disk 1/0 statements to the file, :

: R T L R R T s S : .8
<filename> is a string expression containing a name that conforms to CP/M's
rules for disk filenames., Ly

<reclen> is an integer expression which, if included, sets the record length for
random files. The default record length is 128 bytes,

See also Appendix A. :

A file can be OPENed for sequential input or random access on more than one
file number at a time. A file may be OPENed for output, however, on only one
file number at a time, :

10 OPEN "I",2,"INVEN"

See also Appendix B,

2.46 OPTION BASE

Format:

Versions:
Purpose:

Remarks:

2.47 OUT
Format:

Versions:
Purpose:

Remarks: .- -
Example:
2.48 POKE
Format:

Versions:
Purpose:

Remarks:

OPTION BASE n
where nis 1 or 0

Cassette, Disk

To declare the minimum value for array subscripts.
The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subseript may have is one,

ouT 1J
where I and J are integer expressions in the range 0 to 255.

Cassette, Disk
To send a byte to & machine output port.

The integer expression I.is:the port number, and the-integer expression J is the
data to be transmitted.

100 OUT 32,100

POKE 1,J ‘
where I and J are integer expressions

Cassette, Disk

To write a byte into a memory location.

The integer expression I is the address of the memory location to be POKEd.
The integer expression J is the data to be POKEd. J must be in the range 0 to
255, I must be in the range 0 to 65536.

The complementary function to POKE is PEEK. The argument to PEEK is an
address from which a byte is to be read. See Section 3.27.

“ @
POKE and PEEK are useful for efficient data storage, loading essembly language
. .subroutines, and passing arguments and results to and from assembly language
.subroutines, :
Example: 10 POKE &HO0000,&HFF
2.49 PRINT
Format: PRINT [dist of expressions>]
Versions: ‘Cassette, Disk
Purpose: - To output data at the terminal
Remarks: If <list of expressions)> is omitted, a blank line is printed. If <list of
expressions> is included, the values of the expressions are printed at the
terminal. The expressions in the list- may be numeric -and/or string
expressions. (Strings must be enclosed in quotation marks,)
Print Positions N
The position of each printed item is determined by the punctuhtion used to .
separate the items in the list, EXBASIC divides the line into print zonesof 14. .7
spaces each., - In the list of expressions, a comma causes the next value to be
printed at the beginning of the next zone. A semicolon causes the next value
to be printed immediately after the last value, Typing one or more spaces
between expressions has the same effect as typing a semicolon.
If a comma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list of
expressions terminates without a comma or & semicolon, a carriage return is
printed at the end of the line. If the printed line is longer than the terminal
width, EXBASIC goes to the next physical line and continues printing,
Printed numbers are always followed by a space, Positive numbers are preceded
by a space, Negative numbers are preceded by a minus sign. ~ Single precision
numbers that can be represented with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in the scaled format, are.output
using the unscaled format. For example, 10°(-6) is output as .000001 and
10 ~(~7) is output as 1E~7. Double precision numbers that can be represented
with 16 or fewer digits in the unscaled format no less accurately than they can
be represented in the scaled format, are output using the unscaled format. For
example, 10~ (-16) is output as ,0000000000000001 and 10°(-17) is output as .
1D-17.
A question mark may be used in place of the word PRINT in a PRINT statement. ‘
Example 1: 10 X=5 ‘
20 PRINT X+5, X-5, X*(-5), X°5 ' s
30 END S
RUN .
10 0 -25 3125
Ok
In this example, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone,
Example 2: LIST ’
10 INPUT X |
20 PRINT X "SQUARED IS" X™2 "AND"™;
30 PRINT X "CUBED IS" X"3
40 PRINT
50 GOTO 10
Ok
79
9 SQUARED IS 81 AND 9 CUBED IS 729
221
21 SQUARED IS 441 AND 21 CUBED IS 9261
?

Example 3:

Format:
Versions:
Purpose:

Remarks

Example: .

Example:

10 FORX=1TO5 ~ " RPN B
20 E345 A

2.50 PRINT USING

35

In this example, the semicolon at the end of liné 20 causes both PRINT

statements to be printed on the same line, and line 40 causes a blank line to be
printed before the next prompt, . e

20 x;:;xuo

0 2%K;

50 NEXT X

Ok

RUN

0?(10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT statement cause each value to be
printed immediately after the preceding value, (Don't forget, a number is
always followed by ‘a space and positive numbers are preceded by a space,) In
line 40, a question mark is used instead of the word PRINT,

PRINT USING <"format string">;<list of expressions)
Cassetfe, Disk

¢

To print strings or numbers using a specified format,

<list of expressions> is ‘comprised of the string expressions or numeric
expressions that are to be printed, separated by semicolons, <"format
string">, enclosed in quotation marks, is comprised of special formatti

ing
characters. These formatting characters (see below) determine the field and
the format of the printed strings or numbers,

String Fields

When PRINT USING is used to print Strings, one of three formatting characters
may be used to format the string field: .

nn

p;'inted.

Specifies that only the first character in the given string\is to be

"\nspaces\" Specifies that 2+n characters from the string are to be printed,
If the backslashes are typed with no spaces, two characters will be printed; with
one space, three characters will be printed, and so on, If the string is longer
than the field, the extra characters are ignored, If the field is longer than the

string, the string will be left-justified in the field and padded with spaces on
the right, ‘ ' v ;

10 A$="LOOK":B$="QUT"

30 PRINT USING ™!";A$;B$

40 PRINT USING "\ \™A$;B$

90 PRINT USING "\ \™A$;BS$;mn
RUN

LO

LOOKOUT
LOCK our 1!

nEL" Specifies a variable length string field. When the field is specified
with "&", the string is output exactly as input,

10 A$="LOOK":B$="OUT"
20 PRINT USING "I"A$:
30 PRINT USING "&;B$
RUN

LOUT

Numeric Fields .

When PRINT USING is used to print numbers, the following special characters
may be used to format the numeric field:

A number sign is used to represent each digit position. Digit positions
are alw?'s filled, If the number to be printed has fewer digits than positions
specified, the number will be right-justified (preceded by spaces) in the field,

o A decimal point may be inserted at any position in the field. If the format
string specifies that a digit is to precede the decimal point, the digit will always
be printed (as 0 if necessary). Numbers are rounded as necessary.

. "~ PRINT USING "##.##:".78
0.78
PRINT USING "###.##";987.654
987.65

PRINT USING "#£.8# "10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string
to separate the printed values on the line.

+ A phis sign at the beginning or end of the format string will cause the
sign of the number (plus or mimxu'ls% to be printed before or after the number.

- A minus sign at the end of the format field will cause negative numbers to
be printed with a trailing minus sign. :

PRINT USING "+##.## ™-68.95,2.4,55.6,~.9
-68.95 42,40 55,60 -0.90 .

PRINT USING "####- "-68,95,22.449,-7.01
68.95- 22.45 7.01-

% A double asterisk at the beginning of the format string causes leading
spaces in the numeric field to be filled with asterisks. The ** also specifies
positions for two more digits.

PRINT USING "**#.# ;12.39,-0.9,765.1
*12.4 #-0.9 765.1 ,

3 A double dollar sign causes a dollar sign to be printed to the immediate
left of the formatted number. The $$ specifies two more digit positions, one of
which is the doller sign. The exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus sign trails to the right. .

PRINT USING "$$###. #4";456,78
$456,78

**$ The **§ at the beginning of a format string combines the effects of the
above two symbols. Leading spaces will be asterisk- filled and a dollar sign
will be printed before the number. **$ specifies three more digit positions,
one of which is the dollar sign,

PRINT USING "**$##,#4";2.34
**¥$2.34

’ A comma that is to the left of the decimal point in a formatting string
causes a comma to be printed to the left of every third digit to the left of the
decimal point. A comma that is at the end of the format string is printed as
part of the string, A comma specifies another digit position. The comma has
no effect if used with the exponential (**~*) format.

PRINT USING "####,.#5";1234.5
1,234.50

PRINT USING "####.#4#,";1234.5
1234.50,

| 37
o as%2 ' Four carats (or up-arrows) may be placed t'after't'h'é'aléi'i position characters to
- " specify exponential format. The four carats allow space for E+xx to be
printed. Any decimal %oint position may be e?ecified. The significant dilglits
are left-justified, and the exponent is gust - Unless a leading + or trailing
l , + or - is specified, one digit position will be used to the left of the decimal point
to print a space or a minus sign, :
PRINT USING "#f.4" "~ *m234,56
2.35E+02
PRINT USING ".####~~~~-":888888
.8889E+06 - _
PRINT USING ™+§§~ =~ “n;123
+12E403 e
- An underscore in the format string ceauses the next character to be
: output as a literal character, ‘
[, .
@ PRINT USING "_!###4_1";12.34

112.34!

The literal character itself may be an underscore by placing ®__" in the format

" string.,

% If the number to be printed is larger than the specified numeric field, a
percent sign is printed in front of the mumber. If rounding causes the number
to egzceed the field, a percent sign will be printed in front of the rounded
number,

PRINT USING "####";111.22
%111.22

PRINT USING ™.##";,999
%1.00 N

If the number of digits specified exceeds 24, an "Illegal function cell" error
will resuilt., :

2,51 PRINT # AND PRINT # USING

; Format: PRINT#filenumber>,{ USING<"format
string™>;Klist of exps>
. ' Version: Disk
Purpose: To write data to a sequential disk file,
Remarks: <file number> is the number used when the file was OPENed for output.

<"format string™> is comprised of formattix% characters as described in Section
2.50, PRINT USING. The expressions in <list of expressions> are the numeric
and/or string expressions that will be written to the file.

PRINT# does not compress data on the disk. An image of the data is written to
the disk, just as it would be displayed on the terminal with a PRINT statement,

- For this reason, care should be taken to delimit the data on the disk, so that it
will be input correctly from the disk. In the list of expressions, numeric
expressions should be delimited by semicolons. For example,

PRINT#1,A;B;C;X;YZ

(If commas are used as delimiters, the extra blanks that are inserted between
print fields will also be written to disk.)

i String expressions must be separated by semicolons in the list. To format the
string expressions correctly on the disk, use explicit delimiters in the list of
expressions, ,

2,52 PUT

Format:
Version:

Purpose:

38

For example, let A$="CAMERA" and B$="93604— 1n,
The statement

| PRINT#1,A$;B$

would write CAMERA93604-1 to the disk. Beceuse there are no delimiters, this
could not be input as two separate strings. To correct the problem, insert

‘explicit delimiters into the PRINT# statement as follows:
_PRINTH,A$","B$ il

The imege written to disk is

. CAMERA, 936041

which can be read back into two string variebles,

If the strings themselves contain commas, semicolons, significant leading
blanks, earriage returns, or line feeds, write them to disk surrounded by explieit
quotation marks, :

CHR$(34).

For example, let A$="CAMERA, AUTOMATIC"™ and B$=" 93604-1".. The
statement

PRINT#1,A$;B$

would write the foilowing image to disks

CAMERA, AUTOMATIC 936041 |

and the 'statement

INPUT#1,A$,B$

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To separate
these strings properly on the disk, write double quotes to the disk imege using
CHR$(34). The statement

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$; CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-17

and the statement

INPUT#,B$.

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to BS$.

The PRINT# statement may also be used with the USING option to control the
format of the disk file. For example:

PRINT#1, USING"$$##4#. #4,"; 5, K; L
For more examples using PRINT#, see Appendix B.
See also WRITE#, Section 2,68,

PUT [#]<file number>[,{record number>]
Disk

To write a record from a random buffer to a random disk file,

Remarks:

Examples

2,53 RANDOMIZE 070007

Format:
Versions:
Purpose:

Remarks:

Example:

NOTE:

2,54 READ--

Format:
Versions:

Purpose:

Remarks:

39

{file number> is the number under which the file was CPENed., If <record
number> is omitted, the record will have the next available record number
(after the last PUT). The largest possible record number is 32767,

See Appendix B,
Waey, TEIEE doy

P TR 2 PR
RO rcn s SRR I L R

RANDOMIZE [<expression>]

Cassette, Disk

To reseed the random number generator.

If <expression> is omitted, EXBASIC suspends program execution and asks for a
value by printing :

Random Number Seed (0-65529)7
before executing RANDOMIZE,

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is RUN. To change
the sequence of random numbers every time the program is RUN, place a
RANDOMIZE statement at the beginning of the program and change the
argument with each RUN, ;

10 RANDOMIZE

20 FOR I=1 TO 5

30 PRINT RND;

40 NEXT 1

RUN '

Random Number Seed (0-65529)? 3 (user tsypts 3)

b8k8598 484668 ,586328 ,119426 .70922

RUN)

Random Number Seed (0-65529)? 4 (user types 4

for new sequence) ’

803506 . 162462 ,929364 .292443 ,322921
Ok RN
RUN , % |

Random Number Seed (0-65529)? 3 (same sequence

as first RUN) ‘ * Sl

’&(8598 484668 ,586328 .119426 »709225

With the EXBASIC Compiler, the prompt given by
RANDOMIZE is:

Random Number Seed (~32768 to 32767)?

READ d(list of variables)
Cassette, Disk

To read values from a DATA statement and assign them to variables. (See
DATA, Section 2.10.)

A READ statement must always be used in conjunction with a DATA statement.
READ statements essign variables to DATA statement values on a one~to-one
basis, READ statement variables may be numeric or string, and the values read
‘must agree with the variable types specified. If they do not egree, a "Syntax
error” will result, '

",

40

A single READ statement may access one or more DATA statements (they will be
accessed in order), or several READ statements may access the same DATA
statment, If the number of variables in <list of variables)> exceeds the number
of elements in the DATA statement(s), an OUT OF DATA message is printed. If
the number of variables specified is fewer than the number of elements in the
DATA statement(s), subsequent READ statements will begin reading data at the

first unread element. If there are no subsequent READ statements, the extra
data is ignored,

To reread DATA statements from the start, use the RESTORE statement (see
RESTORE, Section 2.57) v

Example 1: .

80 FOR I=1 TO 10
90 READ A(I) :

100 NEXT 1

110 DATA 3.08,5.19,3.12,3.98,4.24

120 DATA 5.08,5.55,4.00,3.16,3.37 .

This program segment READs the values from the DATA statements into the
array A. After execution, the value of A(1) will be 3.08, and so on.

Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z

Ok

RUN

CITY STATE Z1p
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from the DATA statement inline 30.

2.55 REM

Format: REM <remark> .
Versions: Cassette, Disk

Purpose: To allow explanatory remarks to be inserted in a program.

Remarks: REM statements are not executed but are output exactly as entered when the

program is listed,

REM statements may be branched into (from & GOTU or GOSUB statement), and
execution will continue with the first executable statement after the REM .
statement. Remarks may also be added to the end of a line by preceding the
remark with a single quotation mark instead of :REM. N

Example: .

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

or,

41

120 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I) ' ‘
140 NEXT

2.56 RENUM

Format: RENUM [[<new number)](,[<old mumber>][, <increment>]]]

Versions: Cassette, Disk

Purpose: To renumber program lines,

Remarks: <new number> is the first line number to be used in the new sequence. The
default is 10, <old number> -is the line in the current program where
renumbering is to begin. ‘The default is the first line of the program,
increment> is the increment to be used in the new sequence, The default is
10, RENUM also changes all line number references following GOTO, GOSUB,
THEN, ON...GOTO, ON...GOSUB and ERL statements to reflect the new line
numbers, If a nonexistent line number appears after one of these statements,
the error message "Undefined line xxxxx in yyy%" is printed. The incorrect
line number reference (xxxxx) is not changed by RENUM, but line number yyyyy
may be changed, .

NOTE: RENUM cannot be used to change the order of program lines (for example,

- 'RENUM 15,30 when the program has three lines numbered 10, 20 and 30) or to
create line numbers greater than 65529. An "Illegal function eall® error will
result, o ,
Examples: RENUM

Renumbers the entire program. The first new line number will

be 10. Lines will increment by 10.

RENUM 300,,50 .
: Renumbers the entire program. The first new line number will
be 300. Lines will ircrement by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with line
number 1000 and increment by 20. :

2.57 RESTORE

Format: RESTORE [dine number>]

Versions: Cassette, Disk

Purpose: To allow DATA statements to be reread from a specified point,

Remarks: After a RESTORE statement is executed, the next READ statement accesses the

first item in the first DATA statement in the program. If <line number) is
specified, the next READ statement accesses the first item in the specified
DATA statement,

Example: 10 READ A,B,C
. 20 RESTORE

30 READ D

40 DATA 57

.

E,F
, 68, 79

l 2.58 RESUME

o Formats: - RESUME
ol ' .RESUME 0
by : :
H RESUME NEXT
: Wji: RESUME <line mmber>
g
' Versions: Cassette, Disk
Purpose: To continue program execution after an error recovery procedure has been
performed. ‘) ‘
Remarks: Any one of the four formats shown gbove may be used, depending upon where
execution is to resume: o
RESUME or RESUME 0
, Execution resumes at the statement which caused the error
e ns RESUME NEXT : =
L Execution resumes at the statement immediately following
I the one which caused the error, .
RESUME <line number>
Execution resumes at <line numberd.
A RESUME statement that is not in an error trap routine causes a "RESUME
without error” message to be printed. :
Example: 10 ON ERROR GOTO 900
900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80
2.59 RUN
=1 Format 1: RUN [<line number>]
Versions: Cassette, Disk
Purpose: To .execute the program currently in memory, .
Remarks: If <line number> is specified, execution begins on that line. Otherwise,
yry execution begins at the lowest line number., EXBASIC always returns to
X command level after a RUN is executed.
Example: RUN
k]
‘ Format 2: RUN <filename>[,R]
Version: Disk '
‘ Purpose: To load a file from disk into memory and run it.
1 Remarks: <filename> is the name used when the file was SAVEd, (With CP/M, the default
‘ ‘ . extension ,BAS is supplied.) ,
1 ; RUN closes all open files and deletes the current contents of memory before
Pl loading the designated program. However, with the "R" option, all data files
iy remain OPEN, e
ke,
s Example: RUN "NEWFIL",R
See also Appendix B. .

2.60 SAVE

Format:
Version:
Purpose:

Remarks:

Examples:

2.61 STOP

Format:
Versions:
Purpose:

Remarks:

Example: _ .

" requirements. for filenames.
supplied.) If <filename> already exists, the file will be written over.

X TR TR AT R & e A = R 10 e i e i e i e s

43

SAVE <filename>[,A | ,P]
Disk
To save a program file on disk,

<filename> is a vquoted stri tﬁat éonforms to your operating system's
r%’iith CP/M, the de?ault extension %AS is

Use the A option to save the file in ASCII format, Otherwise, EXBASIC
saves the file in a compressed binary format. ASCII format takes more space
on the disk, but same disk access requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII format file, and some

operating system commands such as LIST may require an ASCII format file.

Use the P option to protect the file by saving it in an encoded binary format,
Wafnf a ﬂgrotected file is later RUN (or LOADed), any attempt to list or edit it
will fa b , ;

SAVE cran be a program statement.

SAVE"COM2",A
SAVE"PROG",P

See also Appendix B.

STop
Cassette, Disk

AN

To terminate program execution and return to command level.

STOP statements may be used anywhere in & program to terminate execution,
When a STOP is encountered, the following message is printed:

Break in line nnnnn ,
Unlike the END statement, the STOP statement does not close files,

EXBASIC ealways returns to command .level: after a STOP- is executed,
Execution is resumed by issuing a CONT command (see Section 2.8).

10 INPUT A,B,C

20 K=A"2%5.3:L=B 3/.26

30 STOP

40 M=C*K+100:PRINT M

RUN ,

? 1,2,3

BREAK IN 30

ok

PRINT L
30,7692

Ok

CONT
115.9

Ok

44

2.62 SWAP

Format: SWAP <variable>,{variable>

Versions: Cassette, Disk

Purpose: To exchange the values of two variables, o
Remarks: Any type variable may be SWAPped (integer, single precision, double precision,

string), but the two variables must be of the same type or a "Type mismatch"
error results, - L T e Bkl ‘ Y

Example: “ LIST . y e . L
- 10°A%$=" ONE:" : B$="ALL " : C$="FOR" -
20 PRINT A$ C$ B$ e
30 SWAP A$, B$
40 PRINT A$ C$ B$
"RUN
Ok
ONE FOR ALL
oﬁLL FOR ONE

2.63 TRON/TROFF

Format: TRON
TROFF
Versions: Cassette, Disk
Purpose: To trace the execution of program statements,
Remarks: As an aid in debugging, the TRON statement (executed in either the direct or

indirect mode) enables a trace flag that prints each line number of the program
as it is executed. The numbers appear. enclosed in square brackets, The trace
flag i;sedd)isabled with the TROFF statement (or when a NEW command is
executed),

Example: TRON
Ok
LIST
10 K=10
20 FOR &1 TO 2
30 L=K + 10
40 PRINT JK;L
50 K=K+10
60 NEXT
70 END

2.64 WAIT
Format:

Versionss

Purpose:

Remarks:

CAUTION:

Example:

3

gt T

45

WAIT <port numberd, 1[J] R
where I and J are integer expressions

Cassette, Disk

To suspend program execution while monitoring
the status of a machine input port,

The WAIT statement causes execution to be suspended until a specified machine
input port develops a specified bit pattern. The data read at the port is

exclusive OR'ed with the inte%er expression J, and then AND'ed with I. If the
S

result is zero, EXBASIC loop

ack and reads the data at the port %gain. If the
result is nonzero, execution contimies with the next statement, If

is omitted,

it is essumed to be zero

It is possible to enter an infinite loop with the WAIT statement, in which case it
will be necessary to manually restart the machine,

100 WAIT 32,2

2.65 WHILE...WEND

Format:

Versions:
Purpose:

Remarks:

Example:

WHILE <expression>

.[<loop statements)]

WEND
Cassette, Disk
To execute a series of statements in a loop as long as a given condition is true.

If <expression> is not zero (ie., true), <loop statements)> are executed until the
WEND statement is encountered. BASIC then returns to the WHILE statement
and checks <expressiond. If it is still true, the process is repeated, If it is not
true, execution resumes with the statement ollowing the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the

mostrecent WHILE. Ahunmatched WHILE statement causes a "WHILE without

%HENILDE" error, and an unmatched WEND statement causes a "WEND without
error, : ‘

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR I=1 TO J-1
130 IF AS$(1)>A$(1+1) THEN
SWAP A$(I),A$(I+1):FLIPS=1
140 NEXT 1

150 WEND

Trra T

s ATARARRGp L T e

1.:"‘..-.;‘:53‘; N

2.66 WIDTH

Format:
Versions:

Purpose:

Remarks:

Example:

2.67 WRITE

Format:
Version:
Purpose:

Remarks:

Example:

46

WIDTH [LPRINT] <integer expression> N

Cassette, Disk

To set the printed line width in number of charaecters for the terminal or line
printer. o S R _

If the LPRINT option is omitted, the line width is set at the terminal. If LPRINT
is included, .the line width is set at the line printer,

<integer expreséion) must have a value in the range 15 to 255. The default
width is 72 characters, ' :

If <integer expression> is 255, the line width is "infinite," that is, EXBASIC
never inserts a carriage return, However, the position of the cursor or the print
head, es given by the POS or LPOS function, returns to zero after position 255,

%&JI\?RINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok

WIDTH 18

Ok

RUN '
ABCDEFGHIJKLMNOPQR
?’(I‘UVWXYZ

0

WRITE[<list of expressions>]

Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank line is output. If <list of
expressions> is inciuded, the values of the expressions are output at the
terminal. The expressions in the list may be numeric and/or string expressions,
and they must be separated by commass,

When the printed items are output, each item will be separated from the last by
8 comma, Printed strings will be delimited by quotation marks. After the last
item in the list is printed, EXBASIC inseris a carriege return/line feed.,

WRITE outputs numeric velues using the same format as the PRINT stafénent,
Section 2.48. .

10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,C$

RUN
80, 90,"THAT'S ALL"
Ok

. 47

2,68 WRITE#
‘ Format: WRITE#file number>list of expressions>
Versions =~ ' Disk E et ThaeT
Purpose: ~To write data to a sequential file,
Remarks: A °Te s T ' '
<file number> is the number under which the file was OPENed in "O" mode. The
expressions in the list are string or numeric expressions, and they must be
separated by commas, ,
The difference between WRITE# and PRINT# is that WRITE# inserts commas
between the the items as they are written to disk and delimits strings with
uotation marks, Therefore, it is not neces for the user to put explieit
elimiters in the list, A carriage return/line feed sequence is inserted after the
lest item in the list is written to disk,
Example: Let A$="CAMERA" and B$="93604-1", The statement:
. WRITE#1,A$,B$)

‘writes the following image to disk:
"CAMERA™,"93604-1"

A subsequent INPUT# statement, such as:
INPUT#1,A$,B$,
would inplit "CAMERA" to A$ and "93604-1" to BS.

48
CHAPTER 3 .
EXBASIC FUNCTICONS

The intrinsic functions provided by EXBASIC are presented in this chapter. The functionsmay be
called from any program without further definition, : ’

, nents to functions are alwayé énc'losédfln' ;érentheses.' In the formats given for the functions
in this chapter, the arguments have been ebbreviated as follows: :

X and'Y Represent any ‘numeric'ekﬁpré‘sions

I andJ Represent integer expressions
X$ and Y$ Représent string expressions

If a floating point value is supplied where an integer is required, E}{BASIC will round the
fractional portion and use the resulting integer.

3.1 ABS
Format: ABS(X)
Versions: Cassette, Disk . .
Action: Returns the absolute value of the expression X,
Example: gIS{IN’I‘ ABS(7%(-~5))
Ok '
3.2 ASC
Format: ASC(X$)
Versions: Cassette, Disk
Action: Returns & numerical value that is the ASCII code of the first character of the
string X$. (See Appendix L for ASCII codes.) If X$ is null, an "Illegal function
call" error is returned, -
Example: 10 X$ = "TEST"
20 PRINT ASC(X$)
RUN
-84
- | L
See the CHR$ function for ASCII-to-string conversion, a
3.3 ATN
Format: ATN(X)
gt Versions: Cassette, Disk
Action: Returns the arctangent of X inradians. Result is in the range -pi/2 to pi/2.
E The expression X may be any numeric type, but the evaluation of ATN is always
3 performed in single precision,
il Example: 10 INPUT X
iE 20 PRINT ATN(X)
il : RUN
EHH! . ?3
HiE 1.24905
Yl Ok
ik
gk
i
. E‘»
il
eofigi
N

[SOV

T T e LRI S AN S et cap i Chor e e i £ IR 3 et et B S T

34 CDBL

Format:
Versions:
Action:

Example:

3.5 CHR$

Format:
Versions:

Action:

Example:

3.6 CINT

Format:
Versions:

Action:

Example:

3.7 COs

Format:
Versions:

Actions

Exeamples

49

CDBL(X) ’ o g £ e
Cassette, Disk

Converts X to a double precision number,

10 A = 454.67
20 PRINT A;CDBL(A)
RUN

614.67 454.6700134277344

CHR$(I)
Cassette, Disk

Returns a string whose one element has ASCII code I, (ASCII codes are listed
in Appendix L). CHRS$ is commonly used to send a special character to the

terminal, For instance, the BEL character could be sent (CHR$(7)) &s a

preface to an error message, or a form feed could be sent (CHR$(12)) to clear a
CRT screen and return the cursor to the home position,

II;RIN'I‘ CHR$(66)

ok
See the ASC function for ASCII-to-numeric conversion,

CINT(X)
Cassette, Disk

. Converts X to an integer by rounding the fractional portion, If X is not in the

range - 32768 to 32767, an "Overflow" error occurs.
‘II’%RINT CINT(45.67)
Ok .

See the CDBL and CSNG - functions for converting numbers to the double
precision and single precision data type. See also the FIX and INT functions,
both of which return integers. ;

COs(X)
Cassette, Disk

Returns the cosine of X in radians, The calculation of COS(X) is performed in
single precision,

10 X = 2*C0S(.4)
20 PRINT X

RUN

1.84212

Ok

TR

oAt
orune &

3.8 CSNG

Format:

T T T gt

Versions:
Action:

Example:

Format:

Version:

Action:

Example:

3.10 EOF

Format:
Version:

Action:

Py g

H
EEZ ek DY Lo

7

gy
R T R

50

. CSNG(X)

Cassette, Disk _
Converts X to a single precision number,

10 A# = 975.3421%

20 PRINT A#; CSNG(A#)
RUN

975.3421 975.342

Ok

See the CINT and CDBL functions for converting numbers to the integer and
double precision data types, _ '

3.9 CVI, CVs, CVD

CVI(<2-byte string>)
CVS(<4-byte string)%
CVD(<8-byte string>
Disk '

-Convert string values to numeric values, Numerie values that areread infroma

random disk file must be converted from strings back into numbers, CVI
converts a 2-byte string to an integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string to a double precision number,

70 FIELD #1,4 AS N$, 12 AS BS, ...
80 GET #1
90 Y=CVS(N$)

See also MKI$, MKS$, MKD$, Section 3.25 and Appendix B.

EOF(<file number)) .
Disk

Returns -1 (true) if the end of a sequential file has been reached. Use EOF to
test for end~of-file while INPUTting, to avoid "Input past end" errors,

20 C=0

30 IF EOF(1) THEN 100
40 INPUT. #1,M(C)

50 C=C+1:GOTO 30

J.11 EXP

Format:
Versions:

Action:

Example:

3.12 PIX

Format:
Versions:

Action:

Examples:

3.13 FRE
Format:

Versions:

Action:

Example:

3.14 HEX$

Format:
Versions:

Action:

Exemple:

51

EXP(X)
Cassette, Disk

i N I P - o, S
e R ol !

- Returns e to the power of X, X must be <=87.3365. If EXP overflows, the

"Overflow" error message is displayed, machine infinity with the appropriate
sign is supplied as the result, and execution continues.

10X =5)
20 PRINT EXP (X-1)
RUN

54.5982
Ok

FIX(X)
Cassette, Disk

Returns the truncated integer part of X, FIX(X) is equivalent to
SGN(X)*INT(ABS(X)). The major difference between FIX and INT is that FIX

~does not return the next lower number for negative X,

PRINT FI1X(58.75)
58

Ok

PRINT FIX(-58.75)
-58

Ok

FRE(0)
FRE(X3)

Cassette, Disk

Arguments to FRE are dixmmy arguments. If the argument is 0
(numeric), FRE returns the number of bytes in memory not being used
by EXBASIC., 1If the argument is a string, FRE returns the number of
free bytes in string space. .

PRINT FRE(0)

14542

Ok

HEX$(X)
Cassette, Disk

Returns a string which represents the hexadécimal value of the decimal
argument., X is rounded to an integer before HEX$(X) is evaluated,

10 INPUT X
20 A$ = HEX$(X)

30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN

? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion,

T E e e T e

s e T e
4 et St g L Ay b e A Ao T <, S D S,

PP

3.15 1INP

Format:

-Versions:
. Action:

Example:

3.16 INPUT$

Format:
Versions

Action:

Examp_le 1:

Example 2:

3.17 INSTR

Format:
Versionss

Action:

Exeample:

52

INP(I)

Cassette, Disk . ; SEEL, o - b s e
Returns the byte read from port I I must be in the range 0 to 255, INP is the
complementary function to the OUT statement, Section 2.47.

100 A=INP(255) T e

INPUT$(X[,[#]Y])

. Disk

Returns a string of X characters, read from the terminal or from file number Y.
If the terminal is used for input, no characters will be echoed and all.control
characters are passed through except Control-C, which is used to interrupt the
execution of the INPUT$ funection, . .

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL :

10 OPEN"I™,1,"DATA"

20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INPUTS(1,#1)));

40 GOTO 20 = - '

50 PRINT

10 END

100 PRINT "TYPE P TO PROCEED OR S TO STQP"
110 XS=INPUTS$(1)

120 IF X3="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

INSTR([1,1X$,Y$)
Cassette, Disk

Searches for the first occurrence of string Y$ in X$ and returns the position at
which the mateh is found. Optional offset I sets the gositi_on for starting the
search, Imustbe in the range 0 to 255. If IDLEN(X$) or if X$ is null or 1If Y$
cannot be found, INSTR returns 0, If Y$ is null, INSTR returns [or 1. X$ and
Y$ may be string variables, string expressions or string literals.

10 X$ = "ABCDEB"

20 Y$ = "Bn

30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6 ‘

Ok

3.18 INT

Format:
Yersions:
Action:

Examples:

3.19 LEFT$

Format:
Versions:

Action:

Example:

3.20 LEN

" Format:

Versions:

Action:

Example:

3.21 LOC

Format:
Version:

Action:

Examples

- INT(X)

53

Cassette, Disk

Returns the largest integer <=X,

ggxm INT(99.89)

Ok

l_’}l?%NI‘ INT(-12.11)

Ok ; ‘ ,

See the FIX and CINT functions which also return integér values,

LEFT$(X$,I)

Cassette, Disk ‘
Returns a string comprised of the leftmost I characters of X$, Imustbe inthe
range 0 to 255, If I is greater than LEN(X$), the entire string (X$) will be
returned, If I=0, the null string (length zero) is returned, -

10 A$ = "EXBASIC "

20 B$ = LEFT$(A$,5)

30 PRINT B$

EXBAS

Ok

Also see the MID$ and RIGHT$ functions,

LEN(XS$)
Cassette, Disk

Returns the number of characters in X$. Non-printirg’ characters and blanks are
counted,

10 X$ = "PORTLAND, OREGON"
%g PRINT LEN(X$)

Ok

LOC(<file number>)

Disk

With random disk files, LOC returns the next record number to be used if a GET
or PUT (without a record number) is executed., With sequential files, L.OC

returns the number of sectors (128 byte blocks) read from or written to the file
since it was OPENed.

200 IF LOC(1)>50 THEN STOP

*'v‘i : /
il
%? f
- %‘ : | 54
{ 3.22 LOG ' ®
‘\ Format: " LOG(X)
Versions: - Cassette, Disk ' . ;
Action: Returns the natural logerithm of X, X must be grée{tér than zero..
Exemple: PRINT LOG(45/7) -
: 1.86075
Ok
3.23 LPOS
Format: LPOS(X)
Versions: Cassette, Disk
Action: Returns the current position of the line printer print head within the line
printer buffer. Does not necessarily give the physical position of the print
head, X is a dummy argument. » v ‘
Example: 100 IF LPOS(X)>60 THEN LPRINT CHR$(13) B B
3.24 MID$
Format: MID$(X$,1[J3])
Versions: Cassette, Disk
Action: Returns a string of length J characters from X$ beginning with the Ith

character, I andJ mustbe in the range 0 to 255. 1If Jis omitted or if there
are fewer than J characters to the right of the Ith character, all rightmost
characters beginning with the Ith character are returned,

If I>DLEN(X$), MID$ returns a null string.

Example: LIST
10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
%?(PRINT A$;MID$(B$,9,7)
RUN
GOOD EVENING
Ok

U SR L 5 B B
ER e o

Also see the LEFT$ and RIGHT$ functions. @

3.25 MKI$, MES$, MED$

Format: MKI$(<inte%‘er expression>)
MKS$(<single precision expression>)
MKD$(<double precision expression>)
Version: Disk ‘
Action: Convert numeric values to string values. Any numeric value that is placed ina

random file buffer with an LSET or RSET statement must be converted to a
string, MKI$ converts an integer to a 2-byte string. MKS$ converts a single
precision number to a 4-bytestring. MKD$ converts a double preecision number
to an- 8-byte string, ~

Example: 90 AMT=(K+T) =
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$

130 PUT #1

* See also CVI, CVS, CVD, Section 3.9 and Appendix B. ‘ ‘

3.26 OCT$

Format:
Versions:

Action:

Exemple:

55

OCT$(X)
Cassette, Disk

Returns a string which represents the octal value of t}ié decimal argument. X
is rounded to an integer before OCT$(X) is evaluated,

7~§1§1mocx$(24) : hoas 137 T

Ok

See the HEX$ function for hexadecimal conversibn.

3.27 PEEK

Format:
Versions:

Action:

Example:

3.28 POS

Format:
Versions:

Action:

. Example:

3.29 RIGHTS

Format:
Versions:

Action:

Example:

PEEK(I)
Cassette, Disk
Returns the byte (decimal integer in the rahge 0 to 255) read from memory

~location I. With the 8K version of EXBASIC, I must be less than 32768. To

PEEK at a memory location above 32768, subtract 65536 from the desired
address, With Cassette and Disk EXBASIC, I must be in the range 0 to 65536.
PEEK is the complementary function to the POKE statement, Section 2.48.

A=PEER(&H5A00)

POS(I)
Cassette, Disk

Returns the current cursor position. The leftmost position is 0. X is a dummy
argument, ;

IF POS(X)>60 THEN PRINT CHR$(13)
Also see the LPOS function,

RIGHT$(XS$,1)
Cassette, Disk

Returns the rightmost I characters of string X$.. If I=LEN(X$), returns X$. If
I=0, the mull string (length zero) is returned.

10 A3$="DISK EXBASIC"
121%1« PRINT RIGHT$(A$,7)

EXBASIC
Ok

Also see the MID$ and LEFT$ functions.

58

3.30 RND
Format: RND[(X)]
Versions: . Cassette, Disk T
Action: Returns a random number between 0 and 1, The same sequence of random
- numbers is igenerated each time the program is RUN unless the random number
generator is reseeded (see RANDOMIZE, Section 2.53). However, X<0 always
restarts the same sequence for any given X,
X>0 or X omitted generates the next random number in the sequence, X=0
repeats the last number generated,
Example: 10 FOR I=1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN

24 30 31 51 5
Ck

3.31 SGN | ®

Format: SGN(X)
Versions: Cassette, Disk
Action: If X0, SGN(X) returns 1.

If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns -1.

Example: ON SGN(X)+2 GOTO 100,200,300 branches to 100 if X is négative, 200 if Xis 0
and 300 if X is positive,

K

3.32 SIN
Format: SIN(X)
Versions: Cessette, Disk
Action: Returns the sine of X in radians. SIN(X) is calculated in single precision.
COS(X)=SIN(X+3.14159/2).
" Exemple: PRINT SIN(L.5) | ‘
° .997495 - . '
Ok '
3.33 SPACE$
Format: SPACES$(X)
Versions: Cassette, Disk
Action: Returns a string of spaces of length X, The expression X is rounded to an
F integer and must be in the range 0 to 255,
§ RN
i Example: 10 FOR1 =170 5

20 X$ = SPACES(I)
30 PRINT X$;I :
40 NEXT I
RUN
1

2

3

4

5
Ok
Also see the SPC function.

3.34 SPC

Format: .
Versions:
Action:

Example:

57

SPC(I) i
Cassette, Disk Lty

Prints I blanks on the terminal. SPC may only be used with PRINT and LPRINT
statements. I must be in the range 0 to 255,

PRINI‘ "OVER" SPC(15) "THERE"
Ok

Also see the SPACE$ function.

3.35 SQR

Format:
Versions:
Action:

Example:

3.36 STR$

Format:
Versions:
Action:

Example:

3.37 STRINGS$
Formats:

Versions:

Action: ‘

Example:

SQR(X)

Cassette, Disk

Returns the square root of X, X must be »=0.
10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SQR(X)

30 NEXT

10 3.16228

15 3.87298
20 g.47214

STR$(X)
Cassette, Disk
Returns a string representation of the value of X,

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER™N
20 ON' LEN(STR$(N)) GOSUB" 30 100,200,300,400,500

Also see the VAL function.

STRING$(1,J)
STRING$(I,X$)

Cassette, Disk

Returns a string of length I whose characters all have ASCII code J or the first
character of X3$.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

---------- MONTHLY REPORT--==--nm==

58

3.38 TAB | ' ®

Format: " TAB(I)

Versionss Cassette, Disk : ' A A T i
Action: - -~ Spaces to position I on the terminal. If the current print position is already

- beyond space I, TAB hes no effect. Space 0 is the leftmost position, and the
rightmost position is the width minus one. I mustbe in the range 0 to 255.
.TAB may only be u/sgd,jijRINT;and LPRINT statements.

Example: ~10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$ -~ ‘
' 30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25,00"

NAME AMOUNT
G. T. JONES $25.00

Ok

3.39 TAN

Format: TAN(X) - B

Versions: Cassette, Disk '

Action: Returns the tangent of X inradians, TAN(X) isecaleulated in single precision,

. . If TAN overflows, the "Overflow" error message is displayed, machine infinit

with the appropriate sign is supplied as the result, and execution continues,

Example: 10 Y = Q*TAN(X)/2

3.40 USR

Format: USR[<digit> 1(X)

Versions: Cassette, Disk

Action: Calls the user's assembly language subroutine with the argunent X, <digitd is
in the range 0 to 9 and corresponds to the digit supplied with the DEF USR
statement for that routine. If <digit> is omitted, USRO is assumed, See
Appendix C,

Example: 40 B = T*SIN(Y) .
50 C = USR(B/2) .
60 D = USR(B/3)

3.41 VAL

Format: VAL(XS$)

Versions: Cassette, Disk ‘

Action: Returns the numerical value of string X$. If the first character of X$ is not +,
-y &, or a digit, VAL(X$)=0, ‘

Example: 10 READ NAMES,CITY$,STATES,ZIP$

20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE"

30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAME$ TAB(25) "LONG BEACH"

-~

See the STR$ function for numeric to string conversion.

Action:

3.42 VARPTR

Format 1:
Versionss
Format 2:

Version:

Example:

VARPTR({variable name))

~ Cassette, Disk

VARPTR(#<file number)
Disk

Format 1: Returns the address of the first byte of data identified with <variable
name>. A value must be assigned to <varisble name> prior to execution of
VARPTR. Otherwise an "Illegal function call” error results. Any type variable
name may be used (numerie, string, arraly), and the address returned will be an
integer in the range 32767 to ~32768, If a negative address is returned, add it
to 65536 to obtain the actual address, ,

VARPTR is usually used to obtain the address of a variable or array so it may be
passed to an assembly language subroutine, A function call of the form
VARPTR(A(0)) is usually specified when passing an array, so that the lowest-
addressed element of the array is returned, o)

- All simple variables should be assigned before ealling. VARPTR for an array,

bec_auseeij the addresses of the arrays change whenever a new simple variable is
assigned,

Format 2: Returns the starting address of the disk I/0 buffer assiéned to <file
number>.

100 X=USR(VARPTR(Y))

61
APPENDIX A

New Features in EXBASIC, Release 5,03

The execution of BASIC programs written under EXBASIC, release 4.51 and earlier, may be
affected by some of the new features in release 5,03, Before running such programs, check for

the following:

12. The at-sign and underscore are no longer used as editing characters.

In CP/M

1. New reserved words: CALL, CHAIN, COMMON, WHILE, WEND, WRITE, OPTION BASE,
RANDOMIZE. S

2. Conversion from floating poinf: to integer values results in rounding, as opposed to
truncation, This aeffects assignment:statements, function and statement eveluations.
E_.gl.dl%gz.s results in 9%=3,A(1.5) yields (A2), TAB (4.5) yields TAB (5.5), X=11,5 MOD 4
yields 0. L ~

3. The body of & FOR..NEXT loop is skipped if the initial value of the loop times the
sign of the step exceeds the final value times the sign of the step, See Section 2.22.,

4, Division by zero and overflow no longer produéé fzital;erro‘rs. See Section 1.8.1.2.
5. The RND function has been changed so that RND with no argument is the same as RND
with a positive argument, The ‘function generates the same sequence of random
numbers with each RUN, unless RANDOMIZE is used, - See Sections 2,53 and 3.30.

6. The rules for PRIN’I‘iﬁg single precision and double precision numbers have been
changed, See Section 2.49,

7211 If the Argxment.to ON...GOTO is out of range, an error message results and execution
halts, ;

8. String space is allocated dynamically, and the first argument in a two-argument

'CLEAR statement will be ignored. See Section 2.4,

9. Respondirg to INPUT with too many or too few items, or with the wrong type of value
(numeric instead of string, ete.), or with & carriage return causes the message "?Redo
from start" to be printed. No assignment of input velues is made until an acceptable
response is given, .

10. There are two new field formatting characters for use with PRINT USING., An
ampersand is used for variable length string fields, and an underscore signifies a literal
character in a format string. ‘

11, If the expression supplied with the WIDTH statement is 255, BASIC uses an
"infinite" line width, that is, it does not insert carriege returns. WIDTH LPRINT may be
used to set the line width at the line printer. See Section 2.66.

13. Veriable names are significant up to 40 characters and can contain embedded
reserved words. However, reserved words must now be delimited by spaces: To maintain
compatibility with eearlier versions of BASIC, spaces will be automatically inserted
between adjoining reserved words and variable names.. WARNING: This insertion of
spaces may cause the end of a line to be truncated if the line length is elose to 255
characters. '

14, BASIC programs may be saved in a protected binary format. See Section 2.60.
EXBASIC, release 5.0, a number of additions have been made to disk I/O capability:
1. After a GET statement, INPUT# and LINE INPUT# may be done to read characters
from the random file buffer. PRINT#, PRINT# USING, and WRITE# may also be used to

put characters in the random file buffer before a buUT statement. :

In the case of WRITE#, EXBASIC pads the buffer with spaces up to the carriage return.
Any attempt toread or write past the end of the buffer causes a "Field overflow" error.

2. /Si<max record size> may be added at the end of the command line to set the maximum
record size for use with random files. The default record size is 128 bytes,

A new feature has been added to the INPUT statement. A comma may be used instead of
a semicolon after the prompt string to suppress the question mark. For example, the
statement INPUT "ENTER BIRTHDATE", B$ will print the prompt with no question mark.

APPENDIX B
EXBASIC Disk 1/0

Disk I/g‘grocedures for the beginning EXBASIC user are examined ih this appendix, If you are new
to EXBASIC or if you're getting disk related errors, read through these procedures and program
examples to meke sure you're using all the disk statements correetly, _ ‘

Wherever a filename is required‘in a disk command or statement, use a name that econforms to vour
operating ‘Sﬁstem's requirements for filenames. The CP/M operating system will append a default
extension ,BAS to the filename given in - a SAVE, RUN, MERGE or LOAD command.

B.1 PROGRAM FILE COMMANDS v ;
Here is a review of the commands and statements used in program file manipulation,

) SAVE "filename"[,A] Writes to disk the program that is currenﬂy residing. in memory.
Optional A writes the program as a series of ASCII characters,
(Otherwise, BASIC uses a compressed binary format.)

. LOAD "filename"[,R] Loads the program from disk into memory. Optional R runs the

; program immediately, LOAD always deletes the current contents of
memory and closes all files before LOADing. If R is included,
however, open data files are kept open. Thus programs can be
chained or loaded in sections and access the same data files,

RUN "filename®[,R] RUN "filename" loads the program from disk into memory and runs it.
RUN deletes the current contents of memory and closes gyu files before
loadixF the program, If the R option is included, however, all open
data files are kept open, '

MERGE "filename"® Loads the program from disk into memory but does not delete the
current contents of memory., The program line numbers on disk. are
m‘inr%ed with the line numbers in memory. If two lines have the same
number, only the line from the disk program is saved. After a MERGE
command, the "merged" program resides in memory, and BASIC returns
to command level, i

4
2
i

!

(Gnieen

RIS ANETRNT

KILL "filename" Deletes the file from the disk. "filename? may be a program file, or a
sequential or random access data file, The KILL command must
contain the file type.

Example: - KILL "MYPROG.BAS"

NAME To change the name of a disk file, execute the NAME statement, NAME
"oldfile” AS "newfile". NAME may be used with program files, random
files, or sequential files.

DLHAMEE R 1%

B.2 PROTECTED FILES

If you wish to save a program in an encoded binary format, use the "Protect" option with the SAVE
command. For example:

SAVE "MYPROG",P

t

FIAS A S st 50 bW O b

I SABERMED SN0 ehgiusiived

A program saved this way cannot be listed or edited.
B.3 DISK DATA FILES - SEQUENTIAL AND RANDOM I/0

There are two types of disk data files that may be created and accessed by an EXBASIC program:
sequential files and random access files.

s

B.3.1 Sequential Files

Sequential files are easier to create than random files but are limited in flexibility and speed when
it comes to accessing the data, The data that Is written to a sequential file is stored, one item
after another (sequentially), in the order it is sent and is read back in the same way.

DATE HIRED? 01/12/72

63 .

The statements and functions that ere used with sequential files are:

OPEN ' PRINT# - INPUT# ~ WRITE#
- PRINT# USING LINE INPUT# -

CLOSE ~EOF LOC : | |
'}'lllw followug program steps are required to create a sequentml file and acc&ss the data in the
e:.. . : .

1. OPEN the file in "0" mode. OPEN "O",#l,"DATA"

2. Write data to the file PRINT#1,A$;B$;C$
using the PRINT# statement,
(WRITE# may be used instead.,)
3. To access the data in the CLOSE #1
file, you must CLOSE the file OPEN "I",#1,"DATA"
and reOPEN it in "I" mode.
4. Use the INPUT# statement to INPUT#1,X$,Y$,2$
read data from the sequential
file into the program, . . ‘

Program B-1 is a short program that creates a sequential file, "DATA", from information you input
at the terrmnal

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

10 OPEN "O",#1,"DATA"

20 INPUT "NAME";N$ -

25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT™;D$
40 INPUT "DATE HIRED™; JHS

50 PRINT#1,N$;m, D$, ,mHS

60 PRINT:GOTO 2

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? ete.

A S WP e B

L o At ry st i R

———a

A st AN s

64

Now look at Program B-2. It accesses the file "DATA" that was created in Program B-1 and
displays the name of everyone hired in 1978, .

- PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

10 OPEN "I".#1,"DATA"

20 INPUT#1,N$,D$,H$

30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE
SUPER MANN .
Ir;(put past end in 20
(o)

Program B-2 reads, sequentially, every item in the file, When all the data has been read, line 20
causes an "Input past end" error. To avoid getting this error, insert line 15 which uses the EOF
function to test for end-of-file: :

15 IF EOF(1) THEN END
and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data to the disk with the PRINT#
USING statement. For example, the statement

PRINT#1, USING"####.##,™A,B,C,D

could be used to write numeric data to disk without explieit delimiters. The comma at the end of
the format string serves to separate the items in the disk file,

The LOC function, when used with a sequential file, returns the number of sectors that have been
written to or read from the file since it was OPENed. A sector is a 128-byte block of data,

B.3.1.1 Adding Data to a Sequential File -
If you have a sequential file residing on disk and later want to add more data to the end of it, you
cannot simply open the file in "O" mode and start writing data. “As soon as you open a sequential

file in "O" mode, you destroy its current contents, The following procedure can be used to add
data to an existing file called "NAMES", o

1. OPEN "NAMES" in ™" mode. . - ‘
2. OPEN a second file called "COPY" in "O" mode. .

()

- Read in the data in "NAMES™ and write it to "COPY™,
CLOSE "NAMES" and KILL it.

-9
.

. Write the new information to TCopy",

Rename "COPY" as "NAMES" and CLOSE.

N’I.CDUI

Now there is a file on disk called "™NAMES" that includes all the previous data plus the
new data you just added. '

Program B-3 illustrates this technique. It can be used to create or add onto a file called NAMES.
This program also illustrates the use of LINE INPUT# to read strings with embedded commas from
the. disk file. Remember, LINE INPUT# will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or until it has read 255 characters,

=

65
PRMRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

10 O ERROR GOTO 2000
20 OPEN "I",#1, 'NAMES" | |
30 REM IF FILE EXISTS, WRITE IT TO "COPY"

40 OPEN "O"#2,"COPY"

50 IF EOF(1] THEN 90

60 LINE INPUT#LA$

70 PRINT2,A$

80 GOTO 50

90 CLOSE #1

100 KILL "NAMES.BAS"

110 REM ADD NEW ENTRIES TO FILE

120 INPUT "NAME™;N$

130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOCP

140 LINE INPUT "ADDRESS? ";A$

- 150 LINE INPUT "BIRTHDAY? ";B$

160 PRINT#2,N$

170 PRINT#2,A$

180 PRINT#2,B$

190 PRINT:GOTO 120

200 CLOSE

205 REM CHANGE FILENAME BACK TO "NAMES"

210 NAME "COPY™ AS "NAMES"

2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GOTO 0

The error trapping routine in line 2000 traps a "File does not exist® error in line 20, If this
?appens, the statements that copy the file are skipped, and "COPY" is created as if it were & new
ile. '

B.3.2 Random Files

Creating and accessing random files requires more program steps than sequential files, but there
are advantages to using random files. One advantege is that random files require less room on the
disk, because BASIC stores them in a packed binary format. (A sequential file is stored as a
series of ASCII characters.) T

The biggest advantage to random files is that data can be accessed randomly, i.e., anywhere on the
disk --it is not necessary to read through all the information, as with sequential files, This is
possible because the information is stored and accessed in distinet units called records and each
record is numbered, ’ -

The statements and functions that are used with random files are:

OPEN FIELD LSET/RSET GET
PUT CLOSE LOC '

MKI$ CVI
MKS$ CVs s
MKD$ CVD

B.3.2.1 Creating a Random File -
The following program steps are required to create a random file.

1. OPEN the file for random OPEN "R",#1,"FILE",32
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.,

T — ooy i g DALt Zopem Bl Nyt i e s g
BrEB RN i Bt bt 5 das Do Lo - . g ik e

syt

NPT UIE ARG Mg ey

e
i

Tl ¢

66

Use the FIELD statement to FIELD #1 20 AS N$,
allocate space in the random 4 AS AS%, 8 AS P$
buffer for the variables that

will be written to the random

file, Ce A =
3. Use LSET to move the data LSET N$=X$

into the random buffer. LSET A$=MKS$(AMT)

Numeric values must be made LSET P$=TEL$

into strings when placed in
the buffer. To do this, use the
"make" functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
& double precision value,

4. Write the data from -~ PUT #1,CODE%
the buffer to the disk ‘ :
using the PUT statement,

Look at Program B-4. It takes information that is input at the terminal and writes it to a random

file, Each time the PUT statement is executed, arecord is written to the file, The two-digit code
that is input in line 30 becomes the record number. - s , e

NOTE

Do not use a FIELDed string variable in an INPUT or LET statement. This causes the
pointer for that veriable to point into string space instead of the random file buffer.

PROGRAM B-4 - CREATE A RANDOM FILE

10 OPEN "R"#1,"FILE"

20 FIELD #1,20 AS N3, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE% :
40 INPUT "NAME™;X$ s »

50 INPUT "AMOUNT";AMT

60 INPUT "PHONE™TEL$:PRINT

70 LSET N$=X$ '

80 LSET A$=MKS$(AMT)

90 LSET PS$=TELS - ;

100 PUT #1,CODE%

110 GOTO 30

B.3.2.2 Access a Random File -

The following program steps are required to access a random files

1. OPEN the file in "R" mode. OPEN "R",#1,"FILE",32
2. Use the FIELD statement to FIELD #1 20 AS NS,
allocate space in the random 4 AS A$, 8 AS P$

buffer for the variables that
will be read from the file,

NOTE

In a program that performs both input and output on the same random file, you can often
use just one OPEN statement and one FIELD statement.

67

3. Use the GET statement to move GET #,CODE%
the desired record into the
random buffer,
4. The data in the buffer may PRINT N$ A

- now be acessed by the program, PRINT CVS(A$) .7 ..070%
Numeric values must be converted L
back to numbers using the :
"eonvert™ functions: CVI for oo
integers, CVS for single R T T R S I
grecxsion values, and CVD -
or double precision velues,

Program B-5 accesses the random file "FILE" that was created in Program B-4. By inputting
the three-digit code at the terminal, the information essociated with that code is read from the
file and displayed, F

PROGRAM B-5 - ACCESS A RANDOM FILE

10 OPEN "R"$1,"FILE"

20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE™;CODE% -

40 GET #1, CODE%

50 PRINT N$

60 PRINT USING "$$###.88"CVS(AS)

70 PRINT P$:PRINT '

80 GOTO 30

The LOC funetion, with random files, returns the "eurrent record number.” The current record
number is one plus the last record number that was used in a GET or PUT statement. For example,
the statement i .

IF LOC(1)>50 THEN END
ends program execution if the current record number in file#l is higher than 50.

Program B-6 is an inventory program that illustrates random file access. In this program, the
record number is used as the part number, and it is assumed the inventory will contain no more than
100 different part numbers. Lines 900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line 270 and line 500) to determine whether
an entry already exists for that part number.,

Lines 130-220 display the different inventorg functions that the program performs. When you
type in the desired function number,line 230 branches to the appropriate subroutine,

PROGRAM B-6 - INVENTORY

120 OPEN"R" #1,"INVEN,DAT",39 .

125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$

130 PRINT:PRINT "FUNCTIONS: ":PRINT

135 PRINT 1,"INITIALIZE FILE"

140 PRINT 2,"CREATE A NEW ENTRY"

150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART™

160 PRINT 4,"ADD TO STOCK"

170 PRINT 5,"SUBTRACT FROM STOCK"

180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"

220 PRINT:PRINT:INPUT"FUNCTION™;F UNCTION

225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680 ,

240 GOTO 220

250 REM BUILD NEW ENTRY

260 GOSUB 840 :

270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE™A$:IF A$_<O"Y" THEN RETURN
280 LSET F$=CHR$(0)

290 INPUT "DESCRIPTION™;DESC$

300 LSET D$=DESC$

310 INPUT "QUANTITY IN STOCK™Q%

68

320 LSET G$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(R%)
350 INPUT "UNIT PRICE™P
360 LSET P$=MKS$(P) .
370 PUT#1,PART% s . : o
380 RETURN : , R R A
390 REM DISPLAY ENTR , , s
400 GOSUB 840 - ~ :
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$: :
440 PRINT USING "QUANTITY ON HAND #HHCVIQS)
, 450 PRINT USING "REORDER LEVEL ##444";CVI(RS)
%5 460 PRINT USING "UNIT PRICE $$##.44";CVS(P$)
7] 470 RETURN - ' :
480 REM ADD TO STOCK o "
490 GOSUB 840 ,
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
910 PRINT D$:INPUT "QUANTITY TO ADD ™A% R
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM. REMOVE FROM STOCK
570 GOSUB 840
. 580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$ g
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$}
ggg éF (g%-gg <0 THEN PRINT "ONLY™;Q%;" IN STOCK™:GOTO 600
%=Q%~- . :
640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW™;Q%;" REORDER LEVEL";CVI(R$)
650 LSET Q$=MKI$(Q%) A
660 PUT#1,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=1 TO 100
710 GET#1,I : ‘
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";CVI(Q$) TAB(50)
"REORDER LEVEL";CVI(R$) ‘
730 NEXT I ' :
740 RETURN
840 INPUT "PART NUMBER™PART% T A
850 IF(PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER™:GOTO 840
ELSE GET#1,PART%:RETURN - -
890 END ' :
900 REM INITIALIZE FILE
| 210 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
¢ 920 LSET F$=CHR$(255) :
: 930 FOR I=1 TO 100
. . 940 PUT#I,I -
950 NEXT 1
960 RETURN"

69
APPENDIX C
C.1 MEMORY ALLOCATION

Memorynipace must be set aside for a assembly language subroutine before it can be loaded.
During initialization, enter the highest memory location minus the amount of memory needed for the
. assembly language subroutine(s). BASIC uses all memory available from its starting location up,
50 only the topmost locations in memory can be set sside for user subroutines, B

When an assembly language subroutine is called, the stack pointer is set up for 8 levels (16 bytes)
- of stack storage, If more stack space is needed, BASIC's stack canbe saved and a new stack set up

for use by the assembly la.nFuage subroutine, BASIC's stack must be restored, however, before

returning from the subroutine, - T Ay BT T e T

The assembly,languagé subroutine may bé loaded into memdry by means of the system monitor, or
the BASIC POKE statement, or (if the user has the MACRO-80 or FORTRAN~-80 package) routines
may be assembled with MACRO-80 and loaded using LINK-80.

. The assembly language subroutine may be loaded into memory by means of the system monitor, or

the BASIC POKE statement, or (if the user has the MACRO-80 or FORTRAN-80 package) routines
may be assembled with MACRO-80 and loaded using LINK~-80,)

C.2 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Cassette and Disk versions, the format of the USR function is
USR[<digit>](argument)

where DIGIT> is from 0 to 9 and the argument is any numeric or string expression. <digit>

specifies which USR routine is being called, and corresponds with the digit sugggied in the DEF

USR statement for that routine, If <digit> is omitted, USRO is assumed. The addressgiven in the

DEF USR statement determines the starting address of the subroutine,

When the USR function call is made, register A contains a value that specifies the type of
argument that was given. The value in A may be one of the following: ‘

Value in A Type of Argument
2 Two-byte integer (two's complement)
3 String ‘
4 Singlé precision floating point number
8 | Double precision floating point number

If the argument is a number, the [H,L] register pair points to the Floating Point Accumulator
(FAC) where the argument is stored,

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and FAC-2 contains the upper 8 bits of
the argument,

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and FAC-2 contains the middle 8 bits of
mantissa and FAC-1 contains the highest 7 bits of mantissa with leading 1 suppressed
(implied). Bit 7 is the sign of the number (0O=positive, l=negative), FAC is the
exponent minus 128, and the binary point is to the left of the most significant bit of the
mantissa. :

If the argument is a double precision floating point number:

FAC-T through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits),

If the argument is a string, the [D,E] register pair points to 3 b{rtes called the "string descriptor.”
Byte 0 of the string descriptor contains the length of the s ing (0 to 255). Bytes 1 and 2,
respectively, are the lower and upper 8 bits of the string starting address in string space,

PR M D

ARSI A 0y

e et it D phnad. 1 M asiiulhealicd

vy

TR MR SACTEI TR ST T IR N Ut o e TR

70

CAUTION: If the argument is a string literal in the program, the string descriptor will point to
program text. Be careful not to alter or destroy your program this way. To avoid unpredictable
results, add +"" to the string literal in the program. Exemple:

e

o A$ = MEXBASICMaMn Tl ool s R e ke s

i IR T LA

This will copy the string literal into string space and will prevent elteration of progrmn text during
a subroutine call,

' Usually, the value returned by a USR function is the same type‘(integer',' string, single preeision or

double precision) as the argument that was passed to it. However, calling the MAKINT routine
returns the integer in [H,L] as the value of the funetion, forcing the value returned by the
function to be integer. To execute MAKINT, use the foliowing sequence to return from the
subroutine: .

PUSH HL ssave value to be returned - '

LD HL, (xxx) ;get address of MAKINT routine -
;save return on stack and #u

EX (SP),HL ;get back [H,L] L

RET sreturn -

Alsohghe argument of the function, regardless of its type, may be forced to an integer b calling

the FRCINT routine to get the integer value of the argument in [H,L]. Execute the following
routine: ' g - : '
Ib HL,SUBlL ;get address of subroutine
scontinuation
PUSH HL ;blace on stack :
.IJJPP ;IL’(XXX) ;get address of FRCINT
L

SUB1: ¢ 0.,
C.3 CALL STATEMENT

Cassette and Disk EXBASIC user function calls may also be made with the CALL statement. The
calling sequence used is the same as that in Exidy's FORTRAN, COBOL and BASIC compilers.

A CALL statement with no arguments generates a simple "CALL" instruction. The correspohdirg
subroutine should return via a simple "RET." (CALL and RET are Z80 opcodes - see any Z80
reference manual for details,)

A subroutine CALL with arguments results in a somewhat more complex calling sequence, For
each argument in the CALL argument list, a parameter is passed to the subroutine. That
parameter is the address of the low byte of the argument, Therefore, paremeters always occupy

two bytes each, regardless of type. ~The method of passing the parameters depends upon the
number of parameters to pass: , o

1. If the number of parameters is less than or equal to 3, they are passed in the
registers. - Parameter 1 will-be in HL, 2 in DE (if present), and 3" in BC (if present);

2. If -the number- of parameters is-greater- than-3, they are passed as follows:
1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data block. BC will point to the low byte of
this data block (i.e., to the low byte of parameter 3).

Note that, with this scheme, the subroutine must know how many parameters to expect in order to
find them. Conversely, the calling program is responsible for passing the correct number of
parameters. There are no checks for the correct number or type of parameters,

If the subroutine expects more than 3 parameters, and needs to transfer them to a local data area,
there is a s&stem subroutine which will perform this transfer. This argument transfer routine is
named $AT (located in the FORTRAN library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The subroutine is responsible for savi
the first two garameters before calling $AT. For example, if a subroutine expects
parameters, it should look like:

/

n

SUBR: LD (P1),HL $SAVE PARAMETER 1
. EX DEHL ; e
LD - (P2)HL ;SAVE PARAMETER 2

ID - A3 ;NO. OF PARAMETERS LEFT

LD HL,P3 ;POINTER TO LOCAL AREA

CALL $AT e JTRANSFER THE OTHER THREE PARAMET

b,.[Body of mbrdutine]

;RETURN TO CALLER - -

. 'RET
P1: "~ DEFS 2 iSPACE FOR PARAMETER 1
P2: DEFS 2 ;SPACE FOR PARAMETER 2

P3: ; DEFS 6 s$SPACE FOR PARAMETERS 3-5
A listing of the argument transfer routine AT$ follows.

H ARGUMENT TRANSFER
; B,C]] POINTS TO 3RD PARAM,
H,L] POINTS TO LOCAL STORAGE FOR PARAM 3
A’] CONTAINS THE # OF PARAMS TO XFER (TOTAL-2)

.
?
-
s

GLOBAL $AT ‘
$AT: Eu}){ gEBﬂL jSAVE [H,L] IN [D,E]
?
LD L,C ;[H,L] = PTR TO PARAMS
AT1: ID - C,(HL) :
INC HL
LD BHL
INC HL ;[B,C] = PARAM ADDR
EX- DE,HL ;LH,L] PTS TO LOCAL STORAGE
LD (HL),C
INC HL
LD (HL),B
INC HL ;STORE PARAM IN LOCAL AREA
EX DE,HL ;$SINCE GOING BACK TO AT1
DEC A sTRANSFERRED ALL PARAMS?
JR NZ,AT1-$;NO, COPY MORE
RET sYES, RETURN

~ When accessing e(S)arameters in a subroutine, don't forget that they are pointers to the actual
arguments passed,

NOTE

It is entirely up to the programmer to see to it that the arguments in the calling program match in
mumber, type, and length with the parameters expected by the subroutine. This applies to BASIC
subroutines, as well as those written in essembly langusge.

C.5 INTERRUPTS

Assembly 1 age subroutines can be written to handle interrupts. All interrupt handling
routines should save the stack, register A-L and the PSW. Interrupts should always be re-
enabled before returning from the subroutine, since an interrupt automatically disables all further
interrupts once it is received. The user should be aware of which interrupt vectors are free in the
particular version of BASIC that has been supplied. = (Note to CP/M users: In CP/M BASIC, all
interrupt vectors are free.)

72
APPENDIX D
EXBASIC with the CP/M Operating System =

The CP/M version of EXBASIC (MBASIC) is supplied on a standard size 3740 single densit
diskette. The neme of the file is MBASIC.COM. (A 28K or larger CP/M system is recommended.%

To run MBASIC, bring up CP/M and type"the followings -
ADMBASIC <carriage return> '
The system will reply:

xxxx Bytes Free -
BASIC-80 Version 5.03

(CP/M Version)

Copyright 1978 (C) by Microsoft

Created: dd-mm-yy

Ok

MBASIC is the same as Disk EXBASIC as described in this manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialogue has been replaced by a set of options which are placed after the
MBASIC command to CP/M. The format of the command line is:

A>MBASIC [<filename>][/F:<number of files>][/M:<highest memory location]

If <filenamed is present, MBASIC proceeds as if a RUN <filename> command were typed after
initialization is complete, A default extension of .BAS is used if none is supplied and the filename
is less than 9 characters long. This allows BASIC programs to be executed inbatchmode using the
SUBMIT facility of CP/M. Such programs should include a SYSTEM statement (see below) to
return to CP/M when they have finished, allowing the next programin the batch stream to execute,

NOTE v :
If Xlou have a write protect tab on your system disk, Exidy CP/M gives you the message A
DRV: ERR CODE=B. This is CP/M'S write protect error message, but this does not affect

the performance of EXBASIC apart from the fact that of course you may not write to a
write protected disk,

D.2 FILES COMMAND

Format: FILES[<filename>]
Purpose: To print the names of files residing on the current disk.
Remarks: If <filename> is omitted, all the files on the currently selected drive will be

listed, <filename> is a string formula which may contain question marks (?) to
match any character in the filename or extension. An asterisk (*) as the first
character of the filename or extension will match any file or any extension,

D. 4 RESET COMMAND

Formaf: RESET

Purpose: To close all disk files and write the directory information to a diskette before it
is removed from a disk drive

Remarks: Always execute a RESET command before removirg a disk from a drive.
Otherwise, when the disk is used again, it will not have the current directory
information written on the directory track,

RESET closes all open files on all drives and writes the directory track to every
"disk with open files,

73

APPENDIX E
Converting Programs to EXBASIC = . W@ 707

If you have programs written in a BASIC other than EXBASIC, some minor aedjustments may be
necessary before running them with EXBASIC. Here are some specific things to look for when
converting BASIC programs, - = ' : ; ,

E.l STRING DIMENSIONS

Delete all statenients. that are used to declare the length of strings, A statement such as DIM
A$(1,J), which dimensions a string array for J elements of length I, should be converted to the
EXBASIC statement DIM A$(J). : ' - '

Some BASICs use a comma or ampersand for string concatenation. Each of these mustbe changed
to a plus sign, which is the operator for EXBASIC string concatenation,

In EXBASIC, the MID$, RIGHTS$, and LEFT$ functions are used to take substrings of strirés.
Forms such as A$(I) to access the Ith character in A$, or A$(1,J) to take a substring of A$ from
position I to position J, must be changed as follows: o

Other BASIC EXBASIC
X$=A$(1) X$=MID$§A$,I,1)
X$=A$(13) X$=MID$(AS,I J-1+1)

If the substring reference is on the left side of an assigmment and X$ is used to replace characters
in A$, convert as follows:

Other BASIC EXBASIC
A$§I)=X$ MID$(A$,1,1)=X$
A$(1J9=X$ MID$(A$,IJ-1+1)=X$

E.2 MULTIPLE ASSIGNMENTS
Some BASICs allow statements of the form:
10 LET B=C=0
to set B and C equal to zero. EXBASIC would interpret the second equel sign as a logical
ggﬁr;rtlg; ttvisr:ld set B equal to -1 if C equaled 0. Instead, convert this statement to two asmgrment

10 C=0:B=0

E.3 MULTIPLE STATEMENTS

Some BASICs use a backslash (\) to separate multiple statements on a line. With EXBASIC, be
sure all statements on a line are separated by a calon (:).

E.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICs must be rewritten using FOR...NEXT
loops to execute properly.

Number
1

10

11

12

13

14

74
APPENDIX Fv
Summary of Error Codes and Error Messages

Message

NEXT without FOR = - RS I L _
A veriable in a NEXT statement does not correspond to any previously executed,
ummatched FOR statement variable,

Syntex error T . v :
A line is encountered that contains some incorrect sequence of characters (such as

“unmatched parenthesis, misspelled command or statement, incorrect punctuation, ete.),

Return without GOSUB G .)

A RETURN statement is encountered for which there is no previous, unmatched GOSUB
statement, -+ =~ A N

Qut of data ’

A READ statement is executed when there are no DATA statements with unread data
remaining in the program, o A .

Ilegal function call S .

A parameter that is out of range is passed to a math or string function. An FC error may
also occur as the result of: ’ .

1. a negative or unreasonably large subseript

- & negative or zero argument with LOG

. & negative argument to SQR

. & negative mantissa with a non-integer exponent

< W W N

. a call to a USR function for which the starting address has not yet been given

6. an improper argument to MIDS$, LEFT$, RIGHTS, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRINGS, SPACE$, INSTR, or ON...GOTO. .

Overflow .
The result of a caleulation is too large to be represented in EXBASIC 's number format,
If underflow oceurs, the result is zero and execution continues without an error.

Out of memory . -
& program is too large, has too many FOR loops or GOSUBs, too many variables, or
expressions that are too complicated,

Undefined line ' . .
A linereference ina GOTO, GOSUB, 1F...THEN...ELSE or DELETE is to a nonexistent line,

Subseript out of range - .)
An array element is referenced either with a subseript that is outside the dimensions of
the array, or with the wrong number of subscripts, : ‘

Redimensioned array L
Two DIM statements are given for the same array, or & DIM statement is given for an
array after the default dimension of 10 has been established for that array.

Division bg zero
A division by zero is encountered in a expression, or the operation of involution results in
zero being raised to a negative power. Machine infinity with the sign of the numerator
is supplied as the result of the division, or positive machine infinity is supplied as the
result of the involution, and execution continues,

Illegal direct .
A statement that is illegal in direct mode is entered as a direct mode command.

Type mismatch
A string variable name is assigned a numeric value or vice verss; a function that expects
& numeric argument is given a string argument or vice versa,

Out of string space
String variab espexceed the allocated amount of string s ace, Use CLEAR to allocate
more string space, or decrease the size and number o strings,

15

16

17

18

19

20

21

22

23

26

29

30

50

51

52

53

54

85

75

Strln% too long
a tempt is made to create a string more than 255 characters long,

Stri formula’ too complex : : . om .
tring expression is too long or too complex. The expression should be broken into

amaller exprasions. o : , g A

Can't continue :
An attempt is made to continue a program that. :

1. hes halted due to an error,
2. has been modified during a break in executlon, or
3. does not exist,

Undefined user function
A USR function is called before the function definition (DEF statement) is given.

No RESUME
An error trapping routine Is entered but contains no RESUME statement,

RESUME without error
A RESUME statement is encountered before an error trappmg routme is entered

Unprintable error
An error message is not available for the error condition which exists. Thxs is usually
caused by an ERROR with an undefined error code.

Missing operand
An expression contains an operator with no operand followmg it.

Line buffer overflow
An attempt is made to input a line that has too many characters,

FOR without NEXT
A FOR was encountered without a matching NEXT.

WHILE without WEND

‘A WHILE statement does not have a matchxrg WEND.

WEND without WHILE
A WEND wes encountered without a matching WHILE.

Disk Errors
Field overflow

A FIELD statement is attempting to allocate more bytes than were specified for thew

record length of a random file,

Internal error e
An internal malfunction has occurred in Disk EXBASIC. Report to Exidy the conditions
under which the messege appesred,

Bead file number
A statement or command references a file with a file number that is not OPEN or is out of -
the range of file numbers specified at initialization.

File not found
.3 LKOAD, KILL or OPEN statement referenczs a file that does not exist on the current
is

Bad file mode
An attempt is made to use PUT, GET, or LOF with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other than I, O, or R.

File alreacgiy open
A sequential output mode OPEN is issued for a file that is already open; or a KILL isgiven
for a file that is open.

76

57 Disk 1/0 error . .
An 1/O error occurred on a disk 1/0 operation. It is a fatal error, Le., the operating
system cannot recover from the error, - - :

58 " File already exists : C B n g e 5 emy 3 5 S
'H;e gi}ci(x:arne specified in a NAME statement fs identical to a filename already in use on
e dis . .

61 Disk full
All disk storage space is in use.

62 Input past end ' o '
An INPUT statement is exeucted after all the data in the file has been INPUT, or for a
mull (empty) file. To avoid this error, use the EOF function to detect the end of file,

63 Bad record number .
In & PUT or GET statement, the record number is either greater than the maximum allowed
(32767) or equal to zero, , .

64 Bad file name
An illegal form is used for the filename with LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

66 Direct statement in file
A direct statement is encountered while LOADing an ASCII-format file.. The LOAD is
terminated, X
67 Too many files

An attempt is made to create a new file (using SAVE or OPEN) when all 255 directory
entries are full,

77
APPENDIX G
Mathematical Functions

Derived Funetions

Functions that ‘axy-e not intrinsic to EXBASIC may be calculated as follows.

Funetion - EXBASIC Equivalent
SECANT = © . SEC(X)=1/Cc0s(X)
" COSECANT - csc(x}=1/sm(x)
COTANGENT - , COT(X)=1/TAN(X)
INVERSE SINE ARCSIN(X)=ATN(X/SQR(~X*X+1)) ,
INVERSE COSINE - ARCCOS(X)=-ATN (X/SQR(-X*X+1))+1.5708

INVERSE SECANT - ARCSEC(X)=ATN(X/SQR(X*X-1))
+SGN(SGN(X)~-1)*1.5708 o

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X-1))
+(SGN(X)-1)*1.5708 _

INVERSE COTANGENT ARCCOT{X)=ATN(X)+1,5708
HYPERBOLIC SINE SINH(X)=(EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X)=EXP(-X)/EXP(X)+EXP(~X))*2+1
HYPERBOLIC SECANT SECH(X)=2/(EXP(X)}+EXP(-X))"
HYPERBOLIC COSECANT = CSCH(X)=2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1
INVERSE HYPERBOLIC T 2

SINE . ARCSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC

COSINE ; ARCCOSH(X)=LOG(X+SQR(X*X~1)

INVERSE HYPERBOLIC

TANGENT : ARCTANH(X)=LOG((1+X)/(1-X))/2

INVERSE HYPERBOLIC

SECANT ARCSECH(X)=LOG((SQR(-X*X+1)+1)/X)
INVERSE HYPERBOLIC

COSECANT i ARCCSCH(X)=LOG((SGN(X) *SQR(X*X+1)+1)/X

INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X)=LOG((X+1)/(X~1))/2

s

78
APPENDIX H |

g ASCII Character Codes
% ASCII ‘ ASCII ASCII
; Code Character “ Code Character '~ Code -Character " '
j 000 HUL ou3 + 086 \')
; 001 SOH 04y g P 087 W
; 002 STX 045 - E .088 X
; 003 ETX 046] 089 Y
: oo4 EOT 047 / 090 yA
[005 ENQ o48 0 091 [
006 ACK 049 1 092 \
007 BEL . 050 2 ~ 093 1
, 008 BS : 051 3 09y ~
. 009 HT 052 4 095 <
010 LF 053 5 096 LI
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO . 057 9 100 d
015 ST 058 H 101 e
016 DLE " 059 H 102 f
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 pch 063 ? 106 j
021 NAK -~ 064 e 107 k-
022 SYN 065.. A 108 1
023 ETB: 066 B - 109 m
o024 CAN 067 C 110 n
025 EM 068 D 111 0.
026 : SUB 069 E 112 p
027 "~ ESCAPE -070 F 113 . q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 T 116 t
. 031 us 074 J 117 u
i 032 SPACE 075 K 118 v
033 ! 076 L 119 W
034 " ‘ 077 M 120 X
035 £ 078 N 121 y
036 $ 079 0 122 z
037) 080 P 123
038 & 081 Q 124
039 ! 082 R 125
040 (083 S. 126
041) 084 T 127 DEL
oy2 * 085 U

ASCII codes are in decimal.
LF=Line Feed, FFzForm Feed, CR=Carriage Return, DEL=Rubout

INBEX

L Y
ABS e ‘;'. ae LN] . e e o e o e’ e e e ‘..v LN 4 48
"Addition oo X oo oo) oe X) e UL Y X 6
5 4’ ALL uo'f ot»’ 00’. oc-) ' R oe e oo ;;':i;o 11,13
: . Arctangent ‘, o .‘o- ;.v oe e s e : ow . ee cee 4'
e Atray Variablea .o‘ ce . . . s e s) 4’13,17
s ’ --,,Arraya . oo o se e oo . oo e oo 4,12,14,20
| ST AN " ASC o 5 ve w oo—\A_OO oo o . .o e e . . se) 48
; ASCII codea £ LN] e * e | N ‘ LN LN LI 2 .-.) 48’49’78
ASCII formac T e e '.. e e LN) . e LR 2 LR 2 LR] 11 ’30'43
Assembly language subroutines .. s o 11,16,33,58,59,69
ATN LN 2 . e LR] .o LR J ..‘ LN e LR] L] LN] 48
AUTO e e LR LN] LN e e ..k .’. e '..V L] LN ‘1'10

Boolean Ope:ators . oo oo oo oo e ee oo 7

CALL e e e L e e ." L) .0 11’70

N5 5 Carriage return se .o e) .o X (X 2,25,27,46
i Cassette tape . .o o oo ae L) e o e .e 12’14 S

CDBL s e L) L) e LI . L e L] o s L] 49

I CHAIN . oo o .e os oo .o .o oo . e 11,13

P : Character set .. . o . . .o .o . .o 1

: CHRs oe o oe oe) . o o s e L) oo 49

CINT .. .e .e e s e .e .e LY .o o e s e 49

CLEAR . . e e .e e e .o «s oo o .e 12’61

CLOAD .o ve ee . oo oo o oo ee .o 12

£ CLOAD* oo . .o o .o . e .o .o .o oo 12

. CLOAD? .o . e ow .e oo .o .o s e .o) 13

CLOSE .o . .o .e .o . o . .o 13,63,65

Command level .a L) L .o e e ae oe se 1

COHHON L) LR . e LR) ee T ee L) L) . e 11,13

Concatenation .o s e LR .a .o ‘e ® . LI S 9

Constants .e .e L) Y . .o o oo oo .o \3

CONTo .o .o .o e ee ed ee oo 14,27

Control characters N . o . .o . .o .o 2

: Control-A .o e oo o e e s e e oo ° e L) 19

CC3 Y .o . oo .w .s oo .e o e .o . ee 49

CP/M wv we ei ee ee ee e ev .v 29,30,42,62,72

. CSAVE .e . e .e .e oe . .o .o LY 4

CSAVE* .e .e ve o .e .o .. oo LY) 14

CSNG .. o e .e .e) o .o .o Ly .e oo 50

CVD Y oo) oo .o o e Y e Y LY oo 50,65

CVi .a oo .e .w .e L) .. oo . ee) 50,65

(] .e o o .o .o * e~ . e . oo . e Y 50,65

DATA - e . e e e e e - e e e - e s e . e 15’41

DEF FN e e ..l . e . @ LN 3 e = s ® L 3 LN} * o 15
DEF USR * e LI 3 e LA) . e L LB * 0 ® e s = 16’58
DEFDBL - % - - ‘e e e .e e ee 4,16
DEFINT e e L) e e LN 3 - e . @ .. e L] . e LK 2 4’16
DEFSNG L s e - e c ® LN 3 - . o ‘I. LN 3 . e e e 4’16
DEFSTR LR] . e . e . e -. L] LI} LR 2 * e LI 3 * 0 4’16
DEINT LN e LN 1 e e L LN LN) LN] . e * e 69
DELETE . e X e - e LN 2 o & . @ e e LN] . e 2’11 ’16
DIM . e e e * e LN] e e LN 2 o e * e L] * @ * e 17
Direct mode .o . o - . . s .e . 1,25,32
Division o .o o oo . e .e) . e) oo 7
Double precision o ¥ . e .o w% . 3,16,34,49,61

EDIT .. .eo Cee (3 .o .o ..) 2,9
Edit mode . .) LY .e .e o . o o e 2’9
END L LN LR 3 LR e e LN) LK] LN LN

13,14,19,23

EOF . e s e s s a .. L) s e LY

. .e 50,63,64

ERASE o (Y e . e . L] L) s . ®e 20

Sk ERL LY e L) LR) e s e L) e ° e s e e 20
ERR LI e e L) L) s e LAY ae L) IR) e 20

ERROR LI .e LI) LI) LI] L] . e . e . e L) 20

.

i
i
.
a

KILL .. .e .o .o .e .e .o .o oo .o

LEFTS .o .o .o .o .o .e .o .e .o

LEN o~ .o .o .o oe . e .o .o .e
LET .. o o a% .o . % . s % o 1o
Line feed .. .o . % - o’ .o e .o

oo 14,21,25,61,67

6

FIELD (3% o oe ;n ve oo o0 oo oo
FILES) e oo o ow oo o .e oo
FIX oo .o o e) oo oo ee oo o
FOR...NEXT 0K oo .e oe oo oe o oo
FRCINT -) ve o o) oo e oo oo
FRE oo oo oo . o .e " ee o oo oo
‘Functions e ee . ee o os e oo se ‘o e
" GET oo oo ee ee . ‘e oe oo oo
GOSUB ’ ve o oo oo oo) oo oo o0
GOTO .. - es es oo oo oo oe oo X oo
HEX$ LY e oe o oo oo oo .. s oo
‘Hexadecimal ’ oo o s e .o oo oo oo L)
IF-..GOTO e e ® e oo . LX) .o ° e . e ‘..
IF...THEN .. o oo .o oo Cee oo e e o
IF...THEN..CELSE o0 L) S e e L4 ‘o e L) e e
Indirect mode .. .o .e se . ee o .o .
INP * e LR LR L 2 ® e L LN LN) LN 2
INPUT e e . o LN LK) . e LR] o e
INPUTs LN 3 LK 3 e LN 2 LN) LN 2 LK] LN) LN
INPUT# LN 2 * o o e LN) L] LR 4 . e LR 2 * e
INSTR .o) oo e .o o LR oe .o
INT L 3 LR e e L * e L] LN J L L LN]
Integer . .o . .e .o .o .o .e oo
Integer division " de . s w .o .o W oo
Interrupts . e .o s e oo LY LY LY .o

LINE INPUT st % .. .o we e .e W e

INE INPUT# . b .o %@ .o . s 5o .o .-

2

4

Line numbers «s o . =g Ve - % L ee
Line printer .o .o . .o .o . .o .o
Lines T . o .o ¥ #% .e & e
LISTe .a . .o .o .s .o ww

LLIST .o .o .o .e .o .o .o .e .
LOADo .o . .o .e .e .o .o

Loc e LN 1 LN * e LN] LN 3 LN] * o LI 2

LOG .. . e . .e e .o ace .e . .o
Logical operators . . .o ot o, s %
Loops o .o .o » iw .o e .o o - .o

LPOSo .o . .o .o .o

LPRINT .e .e . .o .o .- e :: ::
LPRINT USING .o .o .o . .e .o .o .o
LSET .. .o .o .e .o .o .o .o .o .o

MAKINT -e oo .o .s .o .o .o
MBASIC .o .e .o .o .. .o .o .o .o
MERGE . .o .o oo oo Cee .o .o oo
MIDs L) ° e .. . LY . e . LN s e . e

MKDSo .e .o . ‘e o .o .o
MKIS v e . e .o LY T ° . L) LYY s e
MKSSe .e oo . .o .o .o .o .o
MOD operator .e .e .o .e .e . .o .e
Modulus arithmetic .. A o .o e 5% .o

Multiplication .. .e o o's . .o . .o

NAME LY Ly ® e . e (Y LI LY LY .o s e

NEgation . .o [} oo . LY s [X) .o
NEw LR] L L3N 3 * e L) LN] e LN LN 3 L 3
NULL .. .o .o .o o .o . .o . .e
Numeric constants . o .o . .o o .
NUmEriC Variﬂbles . e o .e e .o L) .e

AR Y

21,65,66
LN 72
.o 51
ee 22,61
ee 69,70
® 0 51
15,48,77

23,61,65
.o 23

oo 23

.e 51
e e 3'51

ee 24
ee 20,24
L) 24
® e 1

52

LR 4 52
1,63,52
. o 52

.+ 51,53
49,51,53

. 6
LR 3 71

.. 27,62

.. 53
. o 53
21,27,66
.. 46
.. 27
8,61,63
1,10,41
29,46 ,54
.. 1
.. 1,28
.. 29
29,43,62
62,64,65
LR 3 54
.. 7,8
.. 22,45
.. 46,54
.. 29,46
- 29
«s 30,65

<+ 69,70
LN 2 72
11,30,62
30,54,73
ee 54,65
ee 54,65
e 54,65
LN] 1
LN 6
.o 7

0CT$ oo &

octal 3) e e LN L e e LR] LN] * o LR e L] 3 ,55
ON ERROR/ GOTO oo LR) LN LN o0 LN] LN] LR 19 @ 32
ON..IGOSUB LN] e e e e LR] o e LR] e LR] e 32
'ON.c.GOTq L) L L (] e L) oo oe L) .o‘ 32
OPEN .. ee L) oo o o) oe oo 13,21,32,63,65
Operators'o. o o oo ee o ‘.o oo ';@; i }6,7’8,9
OPTION BASE ;0 e o e o o0) e ;., o :fV33
0UT .. .ee L] “ee s e e oo (e ee o ee 733
Overflow L) . e o os oo LX) oe c;.7.51.58,61
4 0verlay ee eoe oo oo oo oo e oo ;o ee 711
Paperrtape . oo .o o oo . oo) ae ‘31
PEEK e e LN] e LN] LN] L] LN] .o . o e '..~ 33.55
POKE o0 LN] LR] LN L] L] . e L] 9 e e LN] 33 ’55
Pos L ¥] * o LN] LR 2 e e LR] o e LR * e L) s e 46 ’55
PRINT e e LN] ® e .o LR LR J . e e e . e L] 34’61
PRINT USING LR 4 e e LN] L] L] L] ‘. LN) LR] 35,61
PRINT# .o e LI LX) oo e L) . o."'37,61,63 "
PRINT# USING L) se s e e ae LR e 37,61)63
Protected files o s e o oo .o . oo 43’61,62‘
PUT e e LR 4 L 2 e LR 4 LK] L -9 * * e 21 ’38,65 '
Random files e F - o .o 21,23,27,30,32;38,53,61
Random numbers .o . e LY . o oo .o . o e 39,56
RANDOHIZE LN} L e e L e e LN LR LN . e 3 9 ,56 » 61
READ * o LS . e e e e LN] e e . e * e .o * e 39’41
Relational operators .o .o .e .o .o .o .o 7
REM e e e . e *e L) L) ‘e e e e LY 40
RENUM LR LN * e L 4 LR 2 e e L 2 e e * e 11 ,20 ’41
RESET # * e LR] V . e L] L 2 ® e .. e LR] * e L) 72
RESTORE e e LN} LN) V LR LK § . e e e * e e L] 41
RESuHE : LR J LN] . e LN - L LN L L L] 42
RETURN) LN . e * e L LN] LN 4 * e . e LR J LA) : 23
RIGHTs * ® LR § L s e LR J * e LN) * e LR 2 L 55
RND * e LN) * e LN] LN) LR 2 L) L] ® e * e 39,56 ’61
ngT . e LN] . e LN - o . e L] . a L * w LN} 30,65
Rubout s e .e o . e .o ° e .e .e 0-2,9,18
RUN LK) LN L] L 2 e e LR LI . e o e e e LN 3 42’62

LN 3 ® e e e 29’43’62
26,28,32,37,47,50,53, 62

LI Cee e e 56

CSAVE wh eeoee e el
Sequential files .e .o .o .
SGN .9 LN) ® e LI J e * e

SIN LN 3 LN) e e . e * e LI} . ® . e - . o LR 3 LK) 56
Single precision = oY o . .e .o 3,16,34,50,61
SPACE$ s e L) e o e LY L) s e o o o 56
sPC . e LI) ® e ase LI LR) * @ * o e e L 3 LN] 57
SQR > e * 8 LN J LR) *® e o LR 2 * e LR 2 * e LR J 57
STOP e e e e * a LN] * e . . e . e e e 14’19,23’43
SIRs *w L .o LN] . e s e LR J L * o LN} * e 57
String constants .o .o .o .o .o oo .e .o 3
String functions we % d .e o 50,51,52,54,55,57,58,73
String operators ve- . o o 9
String 8pace Y o .o .o Ly .e .o 12,51,61,66
String variables . ee e .o .o %4 . 4,16,27
sTRINGs LN 3 o e ® a e e . e o e LK LN) . e . e 57
SUBROUTINES .o . .e .o ‘e .o 5% 11,23,32,69
Subscripts s e s e) .o s e LY e e .o 4,15,33
Subtraction e Y "e * e LY o e oo e e 6
swAP L) LI] - e e e LN] e o s e LI 3 o e * e * e 44

TAB o)) LRy ° e .. .e oo .e .o o . 58
Tab o e s e Y e o oo .o) oo s e .o 1
TAN .s . . en [.o ew . (3 . o e Y 58
TROFF s ee oo .o oo Y oo LY o .n 44
TRON .. .e .s Y) o .o s e L3 o . 44

USR a2 ee ee se se 4e ee es ee 4. 16,58,69
USRLOC e e L 3) e L e e LK 2 s o L N) * 0 ‘.. 69

VAL .. .o
Variables ..
VARPTR .o

WAIT .. .o
WEND
WHILE .o
' WIDTH e e
WIDTH LPRINT
WRITE .o
WRITE# .o

o0 58
o e 4
o ’ 59

o 45

& TEL 45

e 45
e 46,61
ee 46,61
e 46
47 ,61,63

