EINSTEIN

DATA PFPILE
HANDLELNG
N SIC

Phil Croshaw.

CONTENTS
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

LALTOQUCELONss v msvoamun s sumisoin e a

Introduction to data files...... T

%.% Data storage..... coss 0 v s

. Designing the record 1la o‘é -----------

2.3 File structures AT
Lo Jd:il Sequential..ossssinitvinns o
2.3.2 Random - Relative............:-'..
2e343 ‘Random - Indexed.............. :::-

2.4 Selecting the file structure fequired...:

Sequential data fileSeeeeeweeneeneees

3.1 Storing dat@....eeeesceee..

3.2 Reading data...............:::.‘...

Jod Updating dabias e viisss s oeh e

3.4 Deleting data................--...-

3.5 Sorting data......:::'-....".'

RABAOH FTELECIVE , o v s v mwwsmw s s s e

4.3 SCoring dabassasesrosanoissss

4.2 Reading data.................‘-.-......'.

4.3 Updating data......‘.

4.4 Deleting data.............,..::...

Random indexed...iieeeeeeeeecenennas

.1 Btoring data.sssusessnasesies

5.2 Reading T R g

5.3 Updating data...... R P . e

5.4 Deleting data...................'.'.....‘

5.0 Sorting the index..Q..........::::.‘

2.6 Fast searching of an index - Binary ch0p:

Data compaction..... cosn s co oo

2.% Ezducing Ehe CéR & L/F to one character..
‘ ncatenating fields when storin '
6.3 Storing numeric data............%.?T.?lSk

Advanced techniques using Random Indexed files

71 Brief descriptlonssisvsvinsssnenie o
/7.2 Description by example...viveevn.. ...::'..
Round up

Bed DUNTELY s s isvisssbonsedssvenn
8.2 UK Einstein User Group............::::::‘

-
Q)

e
(©

O 00 ~JI O» w o Lo

46
46

Chapter 1 Introduction.

H========================

This book was written to complement the Tatung Einstein 'Basic
Reference Manual provided with the Einstein microcomputer.
Constant reference is made to pages within the Basic Reference
Manual. It is therefore suggested that you have a copy close at

hand when reading this book.

the user of this book has a reasonable

understanding of the Basic programming. language, though not
necessarily the Tatung/Xtal Basic. However, please note ' that
although the principles of data files ‘descibed in this book are
true for most types of Basic, certain parts of this book are only

applicable to Tatung/Xtal DBasic.

It is assumed that

All sample programs are written with 'readability' in mind. It 1is
ams could be written in such

more than possible that sample progr
a manner that they RUN faster or take up less memory. It is hoped

that this book, as well as showing the reader how to use data
files, will provide 'food for thought' when writing file handling

programs in the future.

Chapter 2 Introduction to data files.

2.1 Data storage

_ﬁ__-___--_-‘_-_“—_

There are two basic types of files that may be stored on a disk :

a) Program files
b) Data files

We are concerned with the latter, data files.

usgd to store any type of textual and/or numeric information.
This information may be updated, deleted, added to or

when required. Examples of information that may be stored are :

Documents, letters, forms etc
Employee information

Stock control information
Accounting figures

Names and addresses

o an O
Tt N Wt i N

The 1list is endless and depends on what information you need ¢to
store on a disk. |

A data file may be likened to a desk top card box containing a
}arge amount of cards. Each card could for example, contain
1gformation on one customer. The box as a whole is the 'data
file'. Each individual card is a 'record'. The record may contain
the customers address, postcode, telephone number, credit limit
etc. Each single piece of information is known as a 'field'. For
example, the postcode is one field, the credit limit is another
field, on so on. A single letter or number within a field is

known as a ‘'character' or ‘'byte'. The followin diagram
illustrates these divisions of a data file. . °
FILE A
> |RECORD 1
FILE A
RECORD 4

: JR L
RECORD 3
RECORD 4
——C _
.)
etC. | etC.
FIELD 4

etc.

Data files can be

printed

One or more data files may be stored on any-one side of a 3?
disk. The amount of data that may be stored is limited by the
amount of free space on the formatted disk. Use the DIR . command
under DOS to find how much space is available. AT L

A formatted 3" disk with no files on the disk has 192K of free

space. The directory listing specifies the amount of free space
in units of 1K. One K is 1024 characters or bytes. Therefore an

empty formatted disk may contain 196,608 characters. If your data

record consists of 100 characters you will be able to store 1966
records on an empty formatted disk. v i M oz @

2.2 Designing the record layout.

_I__-I-ﬁ-l_-__"ﬁ_l_—'_"--“—F--_'_“-“--—_-_

Once you have decided on the filename, the next sCep is to
decide ~on the record layout. In deciding the record layout Yyou
will need to take into consideration.the_file-crganizatlon. you,
will be using. The choice of file orgainization is discussed in
section 2.3.4 of this chapter. -

When you are deciding the information to-be_s§0red:in_a record on
a file, a good idea is to list the 'output’ information you want
to see on the printer paper or on the screen. Let us ta%e_ aﬂ
example to clarify this task. We will use a ngstomers'DeLalls
information system in the example. For simplicity we will keep
the number of fields in the record to a minimum. The output we€
might require is as follows :-

a) Customer number

b) Customer name
¢) Address line 1
A

d) LY
e) III | II- 3
-f) "o " A
g) " R 5
h) Phone number

i) Credit limit

- j) Current credit

From this information, we would require a master list of all
customers and all the field information, listed above, for e%ch
customer. Another report that would be handy, .wouldfbeu% toyal
count of all monies owed. Also, the amount of credit still
available for each customer would be of interest. .Thisiﬁoulq b§
calculated by subtracting the money owed from the credit limit
for each customer. | - |

There are tCwoO 'pieces Of information we_réquire that are not
stored on the data file.

a) Credit available
b) Grand total of monies owed

These two fields need not be stored on the data file as they can

be calculated each time the report program is wused. This will

The length of each field d '
. epends on the file o '
gﬁéecgzg;inggi ;;réﬁgz fﬁletorganisations will be deai%agiiﬁtliz
_ cnapter. Further detail
three organisations can be fo -y ey
und in chapters 3,4
look at chapter 6 'Data compaction', fgr hints onaggdugingAligé

length of fields and records b
ef
of each field and the total recorgrﬁeﬁzgﬁ?ing W Rk Detar Lehgrs

2.3 File organisations.

There are three main différ
ent €
(also known as 'organisations'). ng;sagg :fata Er R M.

a) Sequential
b) Random - Relative
c) Random - Indexed

The following three sections will introduce the beginner to the

structures of the files For
: _ o programming examples and f
detail on each file structure please see the re?evant chapt:;Eher

2.3.1 Sequential data files.

Egggigti:%tegatihgileihconpaén ﬁ number of data records with one
_ _ other. ach record consists of
fields with each field terminat | O Rt oe Faat
. ed by a carriage return/li
éig Ezagtgr 6 you will see that the number o% field éetgingﬁggé
- feedehggegﬁé Agcg?rrlfge {Sturn has the ASCII value 13 and
| value ; These two characters f h
carriage return/line feed terminat e
field when stored onto the di ol Bt W o M
sk. They are there so that
Egogram reads t@e_ record/fields from the disk tﬁe w?ﬁ?UT;
atement can delimit on the carriage return/linefeéd.

Egenstregdéng a_s?quentialifile on a disk, the program will have
sl t;; Segg;gaglng SheTflrst record in the file before it can
: ecord. To read the 50th record would invol
gggﬁra?t flrst ‘reading tbe 49 records before it can acczs:e Egg
e 'only Sw:nElEE fggiuménghwagooﬁ getting to the 50th record if
: a e t record. Howe '
files do have advanta s Beiny
: ges. Because all records are read pri
;eadlggbthe record you require, the user may store each rzc;?g Eg
variable length format and so save space on a disk.

Any new records created in a sequential file would be added onto
the end of the data file. To find the end of the file before
writing new records, the data file must be read until the 'End of
File' (EOF) mark is detected. Alternatively, the file can - be
OPENed in APPEND mode which positions the file pointer = at the
end of the data file ready for appending new records. oSee page

274 of the Basic Manual

2.3.2 Random data files - Relative.

A random-relative file contains a series of one or more records
with each record being of a fixed length. The length must be
decided wupon before using the 'CREATE' statement. To calculate
the length of the record, add up the maximum length of each field
within the data record. Then add 2 for each field within the
record to allow for the carriage return/line feed. See Cthe
previous section on 'carriage return/linefeeds' before continuing
oith this section. The number of carriage return/linefeeds may be

reduced. See chapter 6 for details.

Taking the example of the Customer Data file mentioned before,
we can see how the length of the record may be calculated. Below

are the suggested maximum lengths :-

Field name Max length of field Value range

Customer No. 5 | 0 to 99999
" name 25 |

Address line 1 30
i 2 30
o 3 30
- 4 30
L] 5 30
Phone Number 12
Credit limit 7 0.00 to 9999.99
Current credit 7 L " 1

In the above example the numeric fields have the maximum value
that can be stored in each field on the right hand column. Adding
all the field 1lengths together gives you a total of 206
characters. Add 2 for each field within the record to allow for
the carriage return/linefeeds and you have a total record length

of 226.

It is important to note that random-relative files are fixed
length records, with all records being the same length. Because
of the fixed length nature of random files it is possible for the
program to go straight to a particular record. If the record
length is 226 and you want to read the 100th record, by simple
multiplication we can calculate that there are 22374 bytes before
the 100th record (99 X 226). Therefore the first byte of the
100th record is the 22375th byte in the file. All the
calculations and jumping through the file is done automatically
by Xtal Basic, and need not concern the user.

index files the first thing to do is load the index

Th ' e a

wofd a?ilsggmlfo $§Ze :E?EE'WLEhln a'data fi}e accounts for the When using

comes about because of th;eniié2§i - tElS file organisation from the index file into two arrays. . The first array being a

record. Each record is numbered rel 25 - used to find a string array holding the key, and the second array being an

file. Record 98 is the 98th record s {Ve_tolthe beginning of the integer array holding the pointers pointing from the key to the

the file. relative’ to the beginning of data record. With the index in memory, accessing of records 1s
faster than if the index is left on the disk. However, as data

records are deleted and added, you must be careful to remember CoO

E?TgargtggstzigdomaszlaE;Ee gaFE file sfructure to the sequential

_ . uite easi see that

i?:;Vidgﬁin record from a random-relativz file can takzofa§ECle:2

i aiieqUEntéal file depending on how far down the file

BA - xa random. f'in om speed ls at the expense of disc space

oec iles require f1¥ed length records even though
y part of the record may contain information. .

2.3.3. Random data files - Indexed.

T - - A . S
----*——-———--—----—-
- S S S e S

p :
lease ensure that you are quite familiar with sequential and

random-relative files in the ' :
T gl ey previous two sections before reading

update the index array in. memory as well as the index on the
disk. J .
Initially, as records are added, the index entry and data records

lative positions within their files. As more
and data is deleted and the index is kept

f the index key/pointer can differ from the
pointers

are 1in the same re
additions take place,

sorted, the postions O
postion of the related data record. This shows why the

are needed in the index.

to be able to write a

Chapter 5 gives the
gramming with

At this stage the reader should not expect
Basic program using random-indexed files.
reader practical and more precise information on pro

random-indexed files.

A random-indexed file is a da ' '
' ta file with fixed 1
;ﬁcorgg. lAs with rapdom-relative data files, the u52?8§2n fzgg
reZo dln%.e record directly without having to read preceedin
rds rirst. The difference between a relative and indexed dat§

2.4 Selecting the file structure required.

-——--—--——#--*--—----_-l-—————ﬂ-——-——*——_-——-——

file lies in the wa i ndivi .
relative data files ¥ :2 1?gégifgillrecord ls accessed. With After reading the previous three sections the user should start
) al record is selected by a to be in a postion to judge on which Ctype of file organization Cto
some brief guidelines to help you select the

number :
rec6td wi?ﬁinnugger ffilatlng to the relative position of the use. Below are
2 Lle. With indexed files a record can be organisation.

iﬁzizzﬁgrSVlaeaiﬁ kalpgapumeric 'key'. The key is a string of

there is a 'point§¥' zéggc?zégge ighthe et As well as a key First decide if you need the facility of 'random' access. Files

data record. A pointer works ?n EﬁChhkey pointing to the where the user would want to examine individual records, and

'relative' record number in a randomTucl the same way as the there are large amountCs of data, then a random file should be

at fig 3 you can see the relationshi TE e file: If you look chosen. Sequential organisation would suit files with a low

data records. ship Detween the index and the volume of data or those files that would not require individual
asccess to one record eg a text file containing a letter or a

document.

The index can be held on disk within the same file as the data or
In chosing between relative and indexed you would need to examine

§§p§;a§§é¥éd Iz :tigt wiEh however, we will say that the index is
key, the index arrage;ilﬁ gélgegiggegh? data records. To find a the way 1in which the user of the program (and therefore data)
can be speeded up by keeping the indexln athR/NEXT loop. This would want to access data on an individual basis. Taking the
chop to find a key in the index (see S?r ed and doing a binary '‘Customer Details' file mentioned earlier as an example, Che key
section 3.6). | for each record if you were using a random-index file, might be
This would be usefull if the |user

' the surname or company name.
that

gD | | kM ek
m l wanted to search for a particular surname. The problem
JoE | ¢ L | | quickly arises is that each key must be unique. It would be more
INDEX m Am DATA than possible that there would be two 'Smith's. A way of getting
FILE m ‘m FILE over this 'uniqueness' problem is to give each record a 'customer
- “m 5 number'. In giving a number, say 1 for the first customer on the
CLARE | 3 " file, 2 for the second and so on we can Ssee that this suits the
D 7 =% random-relative file organisation.
3, e]
Fig 3 | | Part-codes on a stock system are generally made up of
| alphanumeric characters eg 123/223/TRE/11. A user would expect CO

find details of this part from a d ' i
s ata file using the
as the unique key. The part-code would not be §cceptgaiz T

Eﬁgdogggiligézz file og itz own because it is not numeric. If all
- were stored on an index and access to the
was through the key, then a random-inde;ed file would be neédgg?a

in a

It is difficult to generalise in SEi ' ' '
ecting a fil ' -
because each problem needs to be looked at %ndividﬁal?;%anigatlon

practice using the wvarious organisations the
organisation will become easier.

you
choice of

10

Chapter 3 Sequential Data Files.

3.1 Storing data.

The first step in using data files is to put some data into the
file. Other file operations, such as deleting, reading oOr
updating data, can not take place until data exists in the file.

To create an empty data file use the CREATE statement (Basic
Manual P. 53). Creating a data file is a one off operation. After
the file has been created, the file should then be opened for use
using the OPEN_statement.(Basic'Manual P.163). If you wuse the
CREATE statement to create a file with the same filename as an
existing data file, Cthen the existing data will be erased and a
new empty data file will be created. Unless you want tO reCREATE
an empty data file each time, 1t is usual to write a quick one-
off program to create the data file. Another method would be tO
first use the OPEN statement on the file. If the file does not
exist then error number 25 will be generated, and using the ON
ERR statement you could direct the program to CREATE the file
before resuming the normal processing. The two listings below
demonstrate the two options.

10 REM *********************# 10 REM *******************“k***

70 REM A QUICK CREATE PROG 270 REM USING ON ERR TO CREATE

30 REM ********************** 30 REM *********************#*

40 CREATE "SAMPLE.DAT",FD$ 40 ON ERR GOTO 3000

50 CLOSE 50 OPEN "SAMPLE.DAT",FD$

60 END 60 PRINT "FILE ALREADY EXISTS"
70 GOTO 90

80 PRINT "FILE NEWLY CREATED"

90 REM REST OF PROGRAM

100 GOTO 5000

3000 REM ***ERROR ROUTINE**%%

3010 IF ERR=25 AND ERL=50 THEN
CREATE WSAMPLE.DAT" ,FD$
.OFF ERR: GOTO 80

5000 CLOSE: END

Although the first example looks far simpler, quite often the
second example can provide a more flexible program.

Now the file has been created the next step 1is to pul some
information into the file. First accept the data for each field
from the user. Validate the data if needed, for example, if one
field is 'age', then check the data entered is numeric. Store
each piece of information (ie each field) into its own variable.
When all the data for one record has been entered and validated

the information can be stored as the first record on the file
with the following statements :-

11

10 OPEN "SAMPLE.DAT",FD$
20 PRINT "ENTER NAME ":
30 INPUT A1$
40 PRINT "ENTER AGE "':
50 INPUT A2$
60 PRINT #FD$
70 PRINT A1l$
80 PRINT A2$
90 PRINT #0
- 100 CLOSE
110 END

Line 60 and 90 are very important. There is only one channel
linking the computer with other devices eg screen, disc drives
etc. Before outputing data to a file on a disc or to the screen
you need to tell the computer which file/device is to recieve the
data. Individual files are identified via their file descriptor
(see Basic Manual p.268). The screen is on number 0. The default
is. 0, however once the channel has been assigned to another
device or file the channel remains linked to that device or

channel until the channel is reassigned as in line 90. Any more

output after line 90 will be directed to the screen. It is a good
idea to set the channel immediately back to the screen after
outputting to a file incase an error occurs and an error message
needs to be displayed on the screen. Failure to reset the channel
back to the screen will result in any error messages for the
screen being directed into the data file !! Another way of
seCting the channel back to the screen is to do a global CLOSE,
ie CLOSE all files. This reverts the I/0 channel back to the
default channel, the screen, but if you want to use the file
again the file will need reOPENing. |

In the above example, the two fields to be stored in the file,
are stored temporarily in Al$ and A2$. If you had, say, 10
fields, then a quicker way would be to use an array for temporary
storage, then store the fields on the file using a FOR/NEXT loop.
This can be done as follows |

70 FOR I=1 TO 10: PRINT A$(I): NEXT I

Using this method, line 8O in the original example would =ot be
needed. | o

3.2 Reading. data.

The file will first need to be opened using thée OPEN statement.
To be able to read data from a file, some data must exist. Your

program should however allow for the possibility of there .being
N0 data in the file.

12

With the file open you can read data from the file wusing the
INPUT# statement (Basic Manual p.113). The INPUT# statement pulls
characters from a file or device depending on the channel
specified. To set the channel to point to the file you want to
read use the INPUT# statement as follows :-

INPUT #FD$

The above statement forces all further input to be taken from the
device or file opened previously with the file descriptor FD$.
The first INPUT statement, after the above INPUT #FD$, will read
the first field from the first record of the data file. The next
INPUT will read the second field and so on. For each field you
need one INPUT statement. The Xtal/Basic INPUT statement delimits
on the cariage return/linefeed put at the end of each field. The
following is a program to read the record from the file
SAMPLE.DAT as created in section 3.1 of this chapter.

10 OPEN "SAMPLE.DAT",FD$
20 INPUT #FD$

30 INPUT A1$

40 INPUT #A2$

50 PRINT "NAME IS ";A1$
60 PRINT "AGE IS ";A2$
70 INPUT #0

80 CLOSE

90 END

In the above example, there are two fields, name and age, which
are read into the variables A1$ and A2$. Note line 20 which sets
the I/0 channel for input from the file with the file
descriptor FD$. The channel is set to receive any further input
from the screen at line 70. Line 70 can be removed, as line 80
sets all input/output via the screen and CLOSEs all files.

It there were 10 fields to the record, then rather than have 10
INPUT statements, you could use a FOR/NEXT loop as follows :-

30 FOR I=1 TO 10:INPUT A$(I):NEXT I

In the above example the 10 fields will be put into each of the
10 elements of the array A$(). Line 40 should be deleted. If

there was more than 1 record to be read then a GOTO 30 needs to
be inserted at line 75. -

Constantly reading a file, one record after another, will work so
long as there are records to read. When the program reaches the
end of the data file an End of File (EOF) error occurs. See page

/4 of the Basic Manual. When EOF is detected the program can be
forced to branch off to another part of the progranm.

As well as the INPUT statement, the INCH$ statement can be used
to read data from a data file. However, the INCH$ statement 1is

13

not suitable for variable length records as is usually found

with sequential data files. The use of he INCH$ statement 1is
dealt with in future chapters.

If you are reading one record after another from a sequential

file, Basic has a 'file pointer' that keeps track of which is the

next record to read. If you are part way through reading a
sequential file and want to start reading from the first record
onwards again, you will have to CLOSE the file, and reOPEN it.
This has the effect of setting the pointer at the top of the
file, pointing at the first record.

3.3 Updating data.

O T S S - NS A A WS N e A A

Sequential files can not be updated in a quick and simple way.
When you write to a sequential file the EOF marker is moved to
the end of the record just written. This is fine if you are at
the end of the file. If the file pointer is at the beginning of
the file, and a new record is written to the file, the records

after the new record will be lost, as the new record written will
contain an new EOF marker.

One way around this problem is to store ALL records and their
fields in an internal array. Then update the data in the array as
required. Finally, before exiting the program, CREATE a new file
and write all the data within the array to the created file. This
has the serious 1limitation of taking up a lot of memory and
therefore reducing the amount of records that can be stored. On
the other side of the coin, records held internally mean very
fast access time to find a record as there is no disk access

required after the records have initally been loaded 1into the
internal array.

If you require the facility of being able to wupdate individual
records then it could be that you need a random file to allow a
larger number of records to be stored.

3.4 Deleting data.

Deleting records from sequential files poses a similar problem as
that encountered in wupdating records in sequential files.
Individual records can not be updated, or deleted, directly from
the disk. As with the previous section, one way around this is to
load all records into an internal array. To delete a record,
shuffle all the records up the array by one, starting with the

record after the one to be deleted. The diagram below illustrates
this idea.

14

The problems with this method is that you are limited to the size
of the internal array by memory size. If the record to be deleted
is the first element in the array then ALL elements below have to
be moved up. This can be time consuming according to the size of
the array. |

If you require the facility of being able to delete individual
records then it is suggested that you consider a random file,
depending on the number of records to be stored on disk.

3.5 Sorting data.

—_— . R A A R O S AR e S— —

This book contains two types of sort routines.

a) Bubble sort
b) Binary chop sort

There are many other types of sorts, but one of the above should
satisfy the needs of most programs. The Binary Chop Sort Iis
quicker than the Bubble Sort when sorting large volumes of data
with many records out of sequence. The detailed description below
should allow you to decide on the routine to use.

Bubble Sort.

I have also heard this being called a 'ripple ' sort, as well as
many other things ! The Bubble sort can take place in an internal
array or be sorted directly to/from the disk.Because sequential
files do not allow updating of individual records, records can
not be sorted directly to/from the disk. If you want to sort
records on the disk, without the use of an array, then opt for a
random file.

When sorting sequential files the first step is to OPEN the file
and read each record from the data file. All records should be
placed into an array, the first record in the first element of

the array, second record in the second element and so on. When

all records are stored in the array, make sure the 'number of
records' to be sorted is kept in a variable. Set up two FOR/NEXT
loops with the outer loop being 'FOR 1 TO the number of records
to be sorted'. The inner loop is 'FOR 1 TO the number of records
to be sorted minus 1 each loop'. With each pass an element of the
array is compared with the next element of the array. If the
contents of the current element is greater than the contents of
the next element then these two elements are swapped around. This
process continues through the array. The first pass forces the
element with the highest wvalue to the end of the array.

Therefore, on the second pass there is no need to look at the.

last element, so the number of elements to be compared is reduced
by 1. The Bubble Sort in BASIC code is as follows

1.2

1 REM C EQUALS THE NUMBER OF RECORDS TO SORT items needs to be moved to the other end of the file and a bubble
2 REM A$() ARRAY CONTAINS THE RECORDS TO BE SORTED sort is wused, it must be swapped a thousand times with its
5. DIM A$(100) neighbours before it gets there. If we use a binary chop sort, it
10 C=100:C1=C is first compared with the item 511 records away, then with the
20 FOR I=1 TO C record 255 records further on, then 127 more, then 63, 31 and
30 Cl=Cl-1 finally a 15 record jump. This sort can move a record one
40 FOR Il1=1 TO C1 thousand postions up the file in 6 jumps when a bubble sort would
28 NEig ?f(ll) > A$(I1+1) THEN SWAP A$(I1),A$(I1+1) have moved it only 6 postions of 1000 moves! |
/0 NEXT 1 ‘ The folowing program listing shows a routine to perform a binary
chop sort. The array A$() contains the records to be sorted,
The SWAP statement can be found on page 222 of the Basic Manual. while N contains the number of records to be sorted. The value D
If you want to use this piece of coding with a Basic language a is used to 'chop' the array up. .
without the SWAP statement then substitute the SWAP statement
with the following : 1010 REM Binary chop sort routine
1020 LET D=1
| 1030 LET D=D#*2 |
......... THEN T$=A$(I1+1): A$(I1+1)=A$(I1): A$(I1)=T$ 1040 IF D<=N THEN GOTO 1030
1050 LET D=INT((D-1)/2)
I have put leading spaces in the coding above routine to show | 1060 IF D=0 THEN GOTO 1199
clearly the start and end of each FOR/NEXT loop. The records to 1070 FOR I=1 TO N-D
be sorted are in the array A$(). Make sure that the array 1is 1080 LET J=1I
DIMensioned to allow the maximum number of records possible or 1090 LET L=J+D |
expected. 1100 IF A$(L) < A$(J) THEN GOTO 1120
1110 GOTO 1140
If the array is sorted, except for one record which is at the 1120 SWAP A$(J),A$(L): J=J-D
beginning of the array, and needs to be sorted down to the bottom 1130 IF J>0 THEN GOTO 1090
part of the array, then after one pass the unsorted record will 1140 NEXT 1
be positioned correctly. However, the sort will continue to loop 1150 GOTO 1050
through. To stop this unnecessary processing you can add a bit of 1199 RETURN
coding to get the program to jump out of the sort if all records | - | .
are sorted. The coding consists of a flag being set if a SWAP has The RETURN at 1199 allows the above routine to be GOSUBed. Remove
taken place. If during a complete pass through the inner loop the line 1199 if it is not required. Before using the above routine
flag is not set, then there are no more records to be swapped so don't forget to set N with the number of records to be sorted,
you can stop the sort. The lines of coding below may be inserted store the records into the array A$(), and set the DIM statementC

into the Bubble Sort to catch this condition to the correct size for A$(.).

If you are sorting data on a disk or in an array with the data

15 F=0 | taken from the disk, then it is advisable to use a binary chop
50 coeevcons F=1 o sort. If you only require a small number of records 1in an
65 IF F=1 THEN F=0: ELSE GOTO 80 internal array then opt for a bubble sort. |

80 REM Rest of program
It is a good idea to display a counter on the screen to show that
the data is being sorted, and that the computer hasn't gone dead.

Binary chop sort. | If so, put the PRINT #0 statement after the NEXT of Cthe inner

| loop with the Bubble Sort or with the Binary Chop Sort put the
If you are not aware of a 'binary chop' then read section 5.6 PRINT statement at line 1055. B |
before reading this section. A binary chop sort works on the w

principle of pre-sorting subsets of records which reduces the
transfer of records. A binary chop sort compares, and swaps if

necessary, records wup to half the file apart, and thus records
move to their correct postion much more quickly than if only
ad jacent records were compared and swapped.

Suppose there are a thousand items to be sorted. If one of the

16 , 17

Chapter 4 Random Relative Data Files.

_—_h--—-ﬂl-ﬂ—_--—_——-*—---—.—-—__h"__—_-_-I—_-—_

- S
*“_—H_—-—-_““_—ﬂ—_—“___h-_“ﬂ_-“*_-

Section 2.3.2 of this book gives a background to Random -
Relative files. Also, if you look at page 283 of the Basic Manual
you will find an example of using a Random - Relative file.
Please note that throughout the Basic Manual, where the manual
refers to Random Access files, the author is in fact talking

about what this book calls Random - Relative files. Both names
are acceptable.

4.1 Storing data in a Random - Relative file.

LB]
—_—-——-_-—--——“---——--_—-—-_—--h——--——_—-*--———-

The first step in storing data on a random - relative file is to
CREATE the file. This has been dealt with in some detail in

section 3.1 on Sequential Files. Also see page 53 of the Basic
Manual. |

We will continue this chapter with an example. The data to be
stored consists of information for a garage Parts Department

a) Part description -length 20 alphanumeric
b) " quantity in stock . 4 numeric
8] ™ re-order level . 3 numeric

With relative files, access is gained to a particular record via
a number relating to the record's postion from the beginning of
the file. We must have some way of knowing what record number
relates to what part record. One way would be to make the 'part
number' the same as the record number. The part number does not
need to be stored on the file as a seperate field. The part
number for the first record in the file will be 1, 2 for the
second record and so on. Generally part numbers contain ~quite a
lot of information, besides a record number. For example, the
part number for a Volvo 244/DL 1968 saloon hub cap might Dbe
Y244/DL68/W124 where the W stands for the wheel assemely. The
information contained in the part number tells the operator a
lot, and is obviously needed. To give the part a record number we
could append a record number onto the dealers part number so the
above becomes V244 /DL68/W124/12 where the 12 on the end tells us
that this particular part is the twelveth record in the file.
The record number can be stripped off the complete part number
with the RIGHT$ statement (Page 200 of the Basic Manual).The full
part number would need to be stored as a 4th field. This shows
how you can use meaningful 'key numbers', however for ease of
understanding, the part number in this example will be a number
only relating to the records postion in the file.

The file is to contain the three fields listed above. The length
of each field is given alongside as is the type of data to be
stored. The number of records allowed will depend on the amount
of free space on the disk. The first allowable record number 1is
record 0. In this example we will use record 0 as a count of
the number of records on the file at any one tinme. Keeping a

18

count of the number of records within the file makes it easier to
FOR/NEXT through the file and checking where to add a new record.
Using a counter at the beginning of the file requires you to set
the counter to zero when you CREATE the file. This is coded as
follows

100 CREATE "PARTS.DAT",FD$,33
110 PRINT #FD$,0;0
120 CLOSE

Line 100 1is similar to the CREATE discussed in detail in the
previous chapter, with the exception of the record length. This
must be specified (33 in this case) because Random files require
the 1length of the record to calculate the start of any record.
Don't forget to add on 2 for the carriage return at the end of
each field. Doing this to the Parts File described above gives us
a record length of 33. It is quite common 1in Dbusiness
applications to allow a number of spare bytes for expansion of
the file to include additional information at a later date. Line
110 sets the record count to zero. |

Any time that you wish to add a new record, the new record will
generally be added onto the end of the existing records. The
exception 1is if a record has been deleted, then the new record
could be 1inserted at the postion of the deleted record (see
section 4.4). In adding a new record first OPEN the file and pick
up the record count. To pick up the record count, use the
following coding

10 OPEN '"PARTS.DAT",FD$, 33
20 INPUT #FD$,0;N
30 REM N=THE RECORD COUNTER

The record count taken from record zero needs 1 to be added to it
to give the record number for the new record to be added. 1If the
record count 1is 123 then the new record will become the 124th
record on the file. 1If the record count is zero then the new
record will become record 1. So to continue the coding above, to
add a record the following coding is required

40 PRINT "ENTER PART DESCRIPTION '";: INPUT A$(1)
50 PRINT "ENTER QUANTITY IN STOCK ";: INPUT A$(2)
60 PRINT "ENTER RE-ORDER LEVEL ';: INPUT A$(3)

70 N=N+1: PRINT #FD$,N

80 FOR I=1 TO 3: PRINT A$(I): NEXT I

The above program does not have any validation on the items
input. Each field should have an IF/THEN statement to check the
maximum length allowed for the field has not been exceeded. Also

check that the 'quantity in stock' and 're-order level' are
numeric, before storing on the file. Note at line 70, as well as

incrementing the record count, the line also directs all output
to the file OPENed on channel FD$. The same statement tells the
program that the data is to be sent to the Nth record.

19

Now the record has been stored on the file, the record count in
record 0 needs to be updated. This should be done as soon as the
new data record has been stored in case the computer crashes. To
update the record count add the following line

90 PRINT #FD$,0;N: PRINT #0O

The variable N contains the up to date record count. Don't for
get to sel Lhe output channel back to the screen with a the PRINT
#0. Otherwise CLOSE the file. Note that a CLOSE is the securest
way of safeguarding data in the event of a system crash. The
final output to the disk can be lost in the event of a crash.
This 1is Dbecause the operating system writes information to the
disk in 'blocks'. A block is only written onto the disk when data
for a different block is required to be written to the disk. A
CLOSE however writes any remaining data to the file and reverts

input/output back to the screen. It is a good idea to put a close .

after storing one, or ‘a batch of new records.

Chapter 6 gives you information on compacting data and so save
disk space.

4.2 Reading data - Random Relative file.

_--—--__—--—-.—-—._—_---—..—._—-—._—_.—.--—.__—._-—..—.—_—

Use the OPEN statement to open up the input channel for access

10 OPEN "PARTS.DAT",FD$, 33

Then pick wup the record count from record zero and store in a
numeric variable

20 INPUT #FD$,0;N

You can now set up a FOR/NEXT loop to read through the whole of
the file or just read one record using the record number. First

let us look at using a FOR/NEXT loop to read all the data records
on the file.

30 FOR I=1 TO N: INPUT #FD$, I

40 FOR I1=1 TO 3

50 INPUT A$(I1)

60 NEXT I1

70 PRINT "PART NUMBER . g

80 PRINT "DESCRIPTION " A$(1)
90 PRINT "QTY IN STOCK " A$(2)
100 PRINT "RE-ORDER LEVEL ";A$(3)

110 NEXT I : CLOSE

The outer FOR/NEXT loop (I) makes N number of passes, réading one
record at a time. The inner loop (Il1l), makes three passes, one
for each field in a record. Note how the record number, 1, is

also wused as the part number. The INPUT #FD$,I at line 30 . sets
the file pointer to the start of the Ith record.

20

If you only want to read an individual record then at some stage
the Part Number/record number needs to be input by the wuser.

Putting this into code form you would arrive at something like
the following

30 PRINT "ENTER PART NUMBER ";: INPUT I$

40 I=VAL(I$) : | | | .

50 IF I<1 OR I>N THEN PRINT "INVALID PART NUMBER": GOTO 30
60 INPUT #FD$, I | . | |

/70 FOR I1=1 TO 3: INPUT A$(I1): NEXT Il

80 PRINT "PART NUMBER "]

90 PRINT "DESCRIPTION "SA$(1)
100 PRINT "QTY IN STOCK ":A$(2)
110 PRINT "RE-ORDER LEVEL ';A$(3)
120 CLOSE

The part number entered at line 30 becomes the record number at
line 60. The FOR/NEXT loop at line 70 reads the three fields from
Che file, and finally the data is displayed. The CLOSE at line

120 reverts the input channel to the keyboard. .

Reading Random-Relative files is quite easy once you know the
record number. It is a good idea to always make the record number
a meaningful field within the record ie in the above case the
record number has become the Part Number. If you do not check
that the record number is greater than the highest record number
already existing on the file then trying to read past the 1last
record will result in an 'End of Text' error (see line 40 in the
program above). | .

—-*ﬁ——__——---——----“——_-_——ll-ﬂl—h——_—-““_———“““

There are two steps in updating data

1 Read the record so the user can check its the correct
record |

2 Overwrite the old record with the new data '

The first step is not obligitory, although to save the possible
update of the wrong record or field, it is a very good idea to
check with the user that the correct record has been selected for
update. We will say that we will be using both steps in updating
a part record. Using the above coding to read and display an
individual record, we can add new coding from line 120 onwards.
With the record details displayed on the screen, . go through and
prompt for new data for each field within the record. Coding will
have to be included to allow for the data to be left alone. We
could say that if ENTER is pressed on its own then the field is
to be left as it is. The updating of the record could be enhanced
and made more user friendly by using cursor postioning. For the
following example cursor postioning has been omitted. for
readability

21

Lines 10 to 110 as above

120 PRINT "ENTER NEW DESCRIPTION "
130 IF A$<>"" THEN A$(1)=A$

140 PRINT "ENTER NEW QTY IN STOCK ";: INPUT A$
150 IF A$<>"" THEN A$(2)=A$:
160 PRINT "ENTER NEW RE-ORDER QTY '""s: INPUT A$
170 IF A$<>"" THEN A$(3)= A$ |
180 PRINT #FD$, I

190 FOR Il1=1 TO 3

200 PRINT A$(I1)

210 NEXT I1

220 CLOSE

s ¢ INPUT A$

Line 120 to 170 accepts the new data from the wuser, for each
field on the file. If A$<>"" (A$ is not equal to "") then the
user has NOT pressed ENTER on its own, therefore a new value has
been entered for the field, so store in A$() array. The last
step in updatlng a record is to PRINT the new data over the old
data. This 1is done in the same manner as writing a new record.
Using the record number of the record to be updated, set the file
pointer, using the record number/part number (see line 180), then
use a FOR/NEXT loop to PRINT the three fields. Do not forget to
CLOSE the file if you are going off to do another task within the
program. ‘A system crash after PRINTing the updated record, but

before the CLOSE statement, could result in you 1osing- the
update.

Generally, when updating, you will re-PRINT all fields within the
record, regardless of wether a field was unchanged or not. The
updating of each individual field is 'sequential' in its manner.
The update process updates the first field, then the second field
and so on. Therefore, you can not jump to the 3rd field and
update, then say, jump to the 6th field. and update. You could
however, wupdate the first and second field, then 1ignore the
trailing fields within the record. This would only be required
where the record is quite large, and requires a 1lot of disk
access to read a few records.

4.4 Deleting records from Random - Relative files.

- e - T T - T E— e e I e ————

You can not delete a record from Xtal/Basic in the true sense of
the word. You can only simulate a deletion. A common method of

'deleting' records in Basic, is to update the record filling it
with control-characters or null characters. Control-characters
and null characters can not be directly entered from the keyboard

by the user, therfore the only way that these characters should
of gotten onto the data file is by the program being coded to do
SO.

Because ‘'deletion' 1is a glorified update most of the work

22

involved has been described in the previous section. Use the two
steps described above

1 Read the record so the user can check it is the correct
record to be deleted. | |

2 Overwrite the record with one or more control. chalacters
to show it has been deleted.

Refer to the previous section to see how an individual record was
read from the file and displayed on the screen. With the record
displayed on the screen you can now ask the user if this is the
correct record to be deleted. If they answer 'yes' then the next
stage 1is to update one or more of the fields. It is quite a
common practice to use null characters (Ascii value 0) to signify
deletion of a record, or high values (Ascii value 255). When you
have ~chosen the characters, place them into one or more of the
fields. Which, or how many fields will contain the 'deletion'
characters depends. If there is a possibiliy that you will want
to 'unset' the deletion at a later date, then a good idea is to

have a seperate one character field, set to ascii 0 if it 1is

deleted, or set to ascii 1 if not deleted. This method means that
your data is not actually overwritten and may be recovered at a
later date. When you read a file using this deletion method don't
forget to check to see if the record has been flagged as deleted.

Following on from the 'one character field' deletion method,
another way 1is to set the whole record with ascii 0 and then
rewrite the record. The following coding shows two programs, the
first sets the first field to ascii 0's (deleted), after first
checking that the record hasn't already been deleted !!' The
second program reads a record from the file and checks to see if
it is flagged as deleted. We will use the PARTS.DAT used before

1. 1 REM THIS DELETES AN INDIVIDUAL PARTS RECORD¥¥ ki
- 10 OPEN '"PARTS.DAT", FD$,33
20 INPUT #FD$,0,N: INPUT #0
30 PRINT "ENTER PART NUMBER TO BE DELETED ":: INPUT I$
40 I=VAL(I$)
50 IF I<1 OR I>N THEN PRINT '"DOES NOT EXIST": GOTO 30
60 INPUT #FD$,I
70 FOR I1=1 TO 3: INPUT A$(I1): NEXT I1l: INPUT #0O
80 IF A$(1)=MUL$(CHR$(0),20) THEN PRINT "ALREADY DELETED'":

GOTO 30
90 PRINT "PART NUMBER ",
100 PRINT "DESCRIPTION "AS(1)
110 PRINT "QTY IN STOCK ”;A$(2

120 PRINT "RE-ORDER LEVEL ";A$(3

130 PRINT: PRINT "DO YOU WANT TO DELE"E THIS PART ? ',
140 INPUT A$: IF A$<>"Y" AND A$<>"N'" THEN GOTO 130

150 IF A$="N" THEN GOTO 30

160 A$(1)=MUL$(CHR$(0),20)

170 PRINT #FD$,I;I: PRINT A$(1): PRINT #0O

180 PRINT "PART DELETED": GOTO 30

23

2. 1 REM THIS PROGRAM READS INDIVIDUAL RECORDS AND CHECKS TO

2 REM SEE IF THEY HAVE PREVIOUSLY BEEN DELETED -

10 OPEN "PART.DAT",FD$,33

20 INPUT #FD$,0;N: INPUT #0O

30 PRINT "ENTER PART NUMBER ":: INPUT I$: I=VAL(I$)

50 IF I<1 OR I>N THEN PRINT "PART DOES NOT EXIST": GOTO 30

60 INPUT #FD$,I -

70 FOR I1=1 TO 3: INPUT A$(I1): NEXT I1

80 IF A$(1)=MUL$(CHR$(0),20) THEN PRINT "ALREADY DELETED":

- - GOTO 30 '

90 PRINT "PART NUMBER "I
100 PRINT "DESCRIPTION ";A$(
110 PRINT "QTY IN STOCK ":A$(
120 PRINT "RE-ORDER LEVEL ";A$
130 GOTO 30 .

1)
2)
(3)

The first field in the file is the Part Description. This field

has been used to set the record to deleted. Using this method
there 1is no way that the description can be recovered from the
same field, so be careful when chosing wether to have a seperate
'delete flag' field, or using an existing field.

If the record does not need to be kept for possible historic
reasons, or possibly .to be 'undeleted' at a later date, then that
record will provide an empty space for a new record. However, to
find any possibly deleted records, in which to insert a new
record, the file needs to be read from the start until a record
flagged as deleted is found. Reading through a file to find one
possible deleted record can be a time consuming job with all the
disc I/0 involved. There are several ways around this. One way is
to read through the whole file when first starting the program,
and store all the record numbers of the records deleted. Another

way would be to do a reorganisation every now and again. This
involves periodically reading through the data file and

transfering all none-deleted records across to another file,
maybe on the second disk drive if you have one. When all none-

deleted records have been transfered, you can ERAse the old file
and RENAME the newly created file TO the old file name. This
process is particularlly suitable to a 'batch processing' system.

A final method of deleting a record that does not have to be kept
for historic reasons or possible 'un-deletion' is to move the
last record from the end of the file and write it over: the

deleted record. If vyou do this, don't forget to reduce the
'record counter' in record O, by 1. This method is not suitable

to systems where the 'record number' is relavant to a particuler
data record. For example, in the Parts System mentioned before in
this chapter, the record number also acts as the 'Part Number'.
If a record containing details on say a '1l3 amp plug' has the
Part Number of 67, then the record will be found in the 6/th
record from the start of the file. Moving this record from the
end of the file and overwriting it onto a deleted record means
that Part Number 67 will no longer be in record 67 as expected.
So be carefull in using this deletion method. The. diagram below

24

shows how this last system operates.

FILE A BEFORE
DELETION

RECORD 1

RECORD 2

RECORD 3

RECORD 4 | RECORD TO
BE DELETED
RECORD 5

RECORD 6

25

FILE A AFTER
DELETION

RECORD 1
RECORD 2

RECORD 3
RECORD 5 |

RECORD 6

= e e S S
..; B

Chapter 5 Random index files.

Section 2.3.3 decribes briefly the theory behind Random Index
data files. To review, individual records are accessed via a
'list' of alphanumeric keys. Each key is unique and identifies a
single data record. Access from the key to the data record is via
a 'pointer' that points to the postion of the record within the
data file, in - the same way that record numbers point to the
postion of a record in 'Relative' files. The index may be stored
in a seperate file on the disk or at the beginning of the data

file. In this chapter we will deal with index files where the

index is stored in a seperate file. Chapter 7 will look at a file
handling system where the index is stored in the same file as the
data. | | |

There are two ways of handling the index in your program :

1) Holding the index in an array in memory
2) Holding the index on the disk

The first option has the advantage of being faster when searching
for a single index key but is limited by the number of keys that
can be held in an array in memory. We will deal with the first
option. I have had very few problems with 1indexes in arrays
blowing memory. I generally find that the disk size for data
storage 1is the limitation, not the memory size. Memory size
problems can be overcome using the HOLD function or splitting a
program up into several programs etc. If we have a data record
100 bytes 1long and each index key is 10 bytes 1long, then the
total storage is 110 bytes per record. A formatted disc is 196k
or 200704 bytes (1024 X 196). 200704 divided by 110 shows that we
could store upto 1824 records on a blank 3" disk. If we had 1824
index keys (the maximum in this case) and each key is 10 Dbytes
long, then the array would take up 13k.

This chapter will continue to show you how to use indexes with
data files through- - an example. The data file 1is to hold
information on employees in a company. Each record contains the
following

FField description FField type Field length
Employee name alpha 15
National Ins No numeric 10

Weekly rate of pay numeric 6

Tax code alha/numeric 5

Each data record 1is to be accessed via an alphnumeric key 6
characters long. If you also add the 2 caracters to allow for the
carriage return, this brings the length of each key, to 8 bytes.
The data record contains 36 bytes of data, plus 2 bytes for each
field brings the record length to 44. We will add 10 bytes onto
Lhe length of the data record to allow for possible extra data to
be stored at a later date. The key will consist of the first

26

three characters of the employees surname, followed by a 3 digit
number. The reason for this number is to keep the keys unique. If
there are 6 Smith's, then the first Smith we will give a key of
SMI001. The second, a key of SMIO02 and so on.This way, no two
keys will be the same. We mustn't forget to add on the number of
bytes to be allocated to the key for the pointer. If we allocate
4 bytes, then this will allow a maximum value of 9999 and
increase the key 1length to 12 bytes. This will be more than
enough. To check how many records, along with the keys, you can
store on a disk, add the key length of 12 to the data record
length of 54, and divide into 198656. This shows we can store a
maximum of 3009 data records and keys. It may seem a lot, but
bear in mind, the record layout has been shortened to 4 fields
for ease of coding this example. 1In a real situation there 1is
likely to be between 100 and 200 bytes per record.

The first record of the index file (record 0) will contain the
count of the number of keys on the index at any one time. This 1is
the same as the relative file discussed in the previous chapter.
When wusing these files, the first step is to CREATE the empty
index and data files. The index file needs to have record zero
(count of the number of keys) set to 0. The following coding will
do this.

10 REM THIS PROGRAM WILL CREATE AN EMPTY INDEX AND DATA FILE
20 CREATE "WORKERS.DAT" ,DAT$, 54

30 CREATE "WORKERS.IND",IND$,12

40 PRINT #IND$,0;0

50 CLOSE

When writing file handling programs, allways keep a copy of the
'Create program' on your disk incase the index or data file gets
screwed up during the testing stage or even later.

We are now ready to start storing data onto the files.

5.1 Storing data on Random Indexed data files.

-—————_-*-*----—-—-——*'_--——--—'——_'_—__—'—'_--——‘

There are several steps involved in storing data and updating the
index. These steps are

i TR Look through the array index for a deleted key

2. If none deleted, then add the keylonto the end of the
index

3. Look through the pointers for an empty data record. (Any
‘empty data records will not have a pointer 1in Cthe
index.)

4 . Store the data in the data record

De Add the new key to thé.index afray in memory and update
the index on disk.

27

It can be seen that random index files require quite a lot
coding and thought,

Che

will assume that you have created

codi

If the key was added onto the end of the index then add

1 to the counter in record 0 of the index file

ng could be quite easily used for further

we will not assume that some data records already exist.

Line

"
10
20

- 30

40

50

60
70
80
90
100
110
120
130
140
150
160
170
180
190
220
230
240
250
260
260
270
290
300
310
320
330
340
9999

10 - 20

30
60

/70

90

REM dkdkkkkkdkkk*%%x READ INDEX INTO ARRAY %%k

OPEN '"WORKERS.DAT",DATS$, 54

OPEN "WORKERS.IND'",IND$,12

INPUT #IND$,0:N .

DIM IN$(1000)

DIM RE7%(1000) | -

FOR I=1 TO 1000: RE%Z(I)=0: NEXT I

FOR I=1 TON . .
INPUT #IND$,I: IN$(I)=INCH$(10)
RE% (VAL(RIGHT$(IN$(I),3))=1

NEXT I: INPUT #0 - - .

REM #***_ﬁc**ﬁ**f;**#* ENTER NEW RECORD WK vedxdhidhk

PRINT "ENTER EMPLOYEE NUMBER (XXXNNN) "; :INPUT A$(1)
FOR I=1 TO N

IF IN$(I)=A$(I) THEN PRINT "ALREADY EXISTS":GOTO 120
NEXT I | Pk |
FOR I=1 TO 1000
IF RE7%(I)=0 THEN REC%=I: GOTO 220
NEXT I |
PRINT "NO ROOM IN DATA FILE":
PRINT "ENTER EMPLOYEE NAME " INPUT A$(2)
PRINT "ENTER NAT INS NO ;- 8 INPUT A$(3)
PRINT "ENTER RATE OF PAY : INPUT A$(4)
PRINT "ENTER TAX CODE "5 INPUT A$(S) '
REM R FTdkddddddid STORE DETAILS _..N FILES WAk FxxxkdxXx
PRINT #DAT$,RECY
FOR I=1 TO 4: PRINT A$(I): NEXT I
FOR I=1 TO N |
IF IN$(I)=MUL$(CHR$(0),10) THEN GOTO 320
NEXT I: I=I+1 |
IND%=I: PRINT #IND$,IND%: FMT 3,0: REC$=STR$(REC%)
IN$(REC7)=A%$(1)+REC$: PRINT IN$ (REC7%): PRINT #0:
IF IND7Z > N THEN N=N+1: PRINT #IND$,0O ;N
CLOSE: END |

GOTO 9999

e AP e
. ™

Description '
OPEN the previously CREATED data and index files.

Get the number of the last index key in the index file
numbers available for new
means already

Initialise 'data record
data' « array. O means
contains a data record.
Go through the index and get each key from the
file and store 1in the array IN$(). The
characters of each key is the pointer to the

record so set the data record (RE%Z(?)) to 'full'.

available, 1

last

28

more
however, if you code in a modular form then

programs. We
the index and data file, though

index

data

'-Mﬂ‘:'-_——_—_r -

Must be 6

120 Ask user to enter key for new record.

characters long. Store in A$(1).

130 - 150 Loop through the index array to see if the key entered
already exists on the index.

160 - 180 Loop through to find an empty data record. Store the
new pointer in RECY%

190 If the program gets here then all 1000 data records

are full.

220 - 250 Ask the user to enter the data fields. No length or

numeric validation has been written, but this would
be required.

260 Set the output channel pointing to the new data record

- slot.

270 Output the new data record to the data file.

290 - 310 Now the data record has been stored, vyou are ready to
store the new key in the index. Look through the index
array for a deleted key (all null characters in this
case) and store the position in IND%. If no deleted
keys are found then add 1 and store on the end of the
index.

320 Set the output channel ready for PRINTing the new key
on the index file. Convert the pointer to 3 characters
by adding leading zeroes.

330 Store the new key in the index array, and PRINT the
new key on the index file.

340 It the . new key was added onto the end of the index

then the counter in record zero will need to be

updated by +1.

The above example is not by any means the quickest or most
effeicent way of coding the above, but hopefully it is quite
'readable' for the beginner. Ways of making it more efficient

include the following

1) Add all new records onto the end of index regardless of
whether any keys have been deleted.

2) Only look for the first deleted key, if any, and 1look

for the next deleted key if a second new data record is
to be added.

3) Have some periodical batch processing which physically
removes deleted keys and shuffles the remaining keys up
the index.

A good idea is to have a Menu selection with add,delete and amend
as 3 seperate options. Then only if the 'add' option is selected
do you need to look for new data and index slots. -

When having two seperate files for the index and data records
then it is a good idea to first add the new data record THEN add
the new key to the index. This way, if a computer crash occours
between the two file updates the index will not be corrupted. You
will however loose the data record entered, as this will appear
as deleted or past the end of the index.

29

The above program explains how to read an individual record. To

read all the records within a data file is slightly quicker in
coding terms | '

5.2 Reading data from a random indexed file.

- e e e g e Gl e e ey S T e e T e T T T T T TS T S T S T s s e S aiae s e S SO S

Reading is a far simpler process than adding a record. The steps

involved are 10 REM *¥¥x#%% TO READ ALL THE RECORDS IN AN INDEX FILE*##ks

20 ...line 20 to 80 as in the above example
1) Open the data and index file
80

90 FOR I=1 TO N

100 REC%=VAL(RIGHT$ (IN$(I),3))

110 INPUT #DAT$,RECY B
120 FOR I1=1 TO 4: INPUT A$(I1): NEXT I1

130 PRINT "EMPLOYEE NUMBER "SLEFT$(IN$(I),6)
140 PRINT "EMPLOYEE NAME "JA$(1)

150 PRINT "NAT INS NUMBER ":A$(2)

2) Get the counter of the number of keys in the index
3) Load the index from the index file into an array

4) Ask the user to enter the key of the record they require

5) Search the index array for the'key. If it is not there
then send error meaasge, 'not found', to the user.

160 PRINT "RATE OF PAY ";A$(3)
6) It it is there then get the pointer from the key and go 170 PRINT "TAX CODE "5A$(4)
and read the data record and display/print. 180 NEXT 1
190 CLOSE
Converting the above steps into coding, and using the Employee -
File wused in the last section, you should end up with something To read all the data records, access must be via the index. You
like this :- | | can not read the data records directly, as deleting involves
’ removing the key entry only, and not a physical deletion of the |
10 REM *%%dkd%%x%x%*READ A SELECTED RECORD FROM AN INDEX FILE** data record. Also, the key is an inCegeral part of the data for
20 OPEN "WORKERS.DAT'",DATS$,54 | each record (the employee number in this case) and therefore
30 OPEN "WORKERS.IND",IND$,12 needed. Direct reading of the data could give unexpected results
40 DIM IN$(1000) and 'garbage' data.
50 INPUT #IND$,0;N ' |
60 FOR I=1 TO N 5.3 Updating data in random index files.
70~ INPUT #IND$,I: IN$(I)=INCH$(20) | ==eme—mmeme I i L L
80 NEXT I: INPUT #0O | o
90 PRINT "ENTER THE RECORD KEY '";: INPUT K$ A decision needs to be made, as to whether or not the user of a
100 FOR I=1 TO N random-index file is allowed to change the index key at any
110 IF IN$(I)=K$ THEN GOTO 140 stage. For example, customer numbers are generally set once for
120 NEXT I | e§ch customer, and remain that number. If the user stops trading
130 PRINT "DOES NOT EXIST'": GOTO 90 with a customer, the number is held back Just in case trading is
140 REC7%=VAL(RIGHT$(IN$(I),3)): IND%=I resumed. Quite often, customer details such as address etc are
150 INPUT #DAT$,RECZ stored in a seperate file. These details are accessed by the
160 FOR I=1 TO 4 : INPUT A$(I): NEXT I: INPUT #0O Customer number held in a transaction record. If the customer
170 PRINT "EMPLOYEE NUMBER ";LEFT$(IN$(IND%),6) ?umber on the customers detail file was changed, you would get a
180 PRINT "EMPLOYEE NAME " AS(1) | can't find customers details' error when the customer number on
190 PRINT "NAT INS NUMBER ";A$(2) . . the _transacFion file tries to find the corresponding customers
200 PRINT "RATE OF PAY WAS(3) ; details. This is sometimes the same with part numbers, tax
210 PRINT "TAX CODE ";A$(4) reference codes etc. However, ther are cases where the key may be
220 CLOSE | | | changed at any time to allow for Cyping errors etc.
It is quite simple to allow for the two above possibilities. If

an ammendment of the key is not allowed, display the field, but
do not prompt the user to enter a new value.

In any updating of a data record, it is quite common, though not
always the case, to allow the user to see Che records fields on
the screen before asking the user to enter new values for one or
more of the fields. So the first operation will be to ask the

30 31

e _—

e T T

IR A —

user to enter the record key. Check the key exists on the index,
read the data files using the pointer then display the record
details on the screen. Now you can go through each field
(excluding or including the key field ?) and prompt for a new
value for the field. Don't forget to validate the data and check
the length to avoid truncation of the field data. Finally you can
rePRINT the record using the pointer as the record 1locator. To
summarise the steps

1) Ask the user to enter the record key
2) Search through the index array to check the key exists

3) If it exists thén read the data record from the disk and
display | r o

4) Prompt for a new'value_to be entered for each field and
validate the input

>) Rewrite the updated record onto the disk using the same
record pointer as when the file was read

6) Close the file

Below is an example of how the above could be coded. The previous
example of the Employees File will be used. The key, employee
number, can be changed in this example. Generally employee
numbers would remain for one particular employee even after the
employee has left the company. This is because tax offices may
refer to an employers previous employees using the original
employee number as the reference etc. | |

10 REM *¥%%%%%% INITIALISE INDEX ARRAY sk %
20 OPEN '"WORKERS.DAT'",DAT$,S54
30 OPEN "WORKERS.IND",IND$,12
40 DIM IN$(1000) '
50 INPUT #IND$,0;N
60 FOR I=1 TO N _
70 INPUT #IND$,I: IN$(I)=INCH$(10)
80 NEXT I: INPUT #0 '
90 REM *%%k*%%%*x ASK USER FOR KEY AND GET THE RECORD *%¥%%
100 PRINT "ENTER EMPLOYEE NUMBER (XXXNNN) ";: INPUT E$
110 IF LEN(E$) <> 6 THEN PRINT "INVALID NO.": GOTO 100
120 FOR I=1 TO N s
130 IF IN$(I)=E$ THEN IN%=I: GOTO 160
140 NEXT I _ o _
150 PRINT "DOES NOT EXIST IN INDEX ARRAY'": GOTO 100
160 REC%=RIGHT$(IN$(IN%),3): INPUT DAT$,RECY
170 FOR I=1 TO &4: INPUT A$(I): NEXT I: INPUT #0O

180 PRINT "EMPLOYEE NUMBER " LEFT$(IN$(IN%),6)
190 PRINT "EMPLOYEE NAME meAS(1)
200 PRINT "NAT INS NUMBER " A$(2)
210 PRINT "RATE OF PAY MAS(3)
220 PRINT "TAX CODE " AS(4)
32

230 REM *%%%%% PROMPT FOR NEW DATA FOR EACH FIELD%%%%%%%%%%
240 REM *¥%%*% TF ONLY ENTER IS PRESSED CURRENT DATA #%%%%%
250 REM *%%%*% IS LEFT UNCHANGED %% v % % % % s % v % 3 % % 5 3 5 o sk o e o % o
260 PRINT "ENTER NEW EMLOYEE NUMBER -

3

270 INPUT Z$: IF ASC(Z$)=13 THEN GOTO 300
280 PRINT #IND$;IN%:FMT 3,0

290 Z$=MULS$ (" "y 7-LEN(Z$))+Z$+STR$ (REC%)
290 PRINT Z$

300 PRINT "ENTER EMPLOYEE NAME ";: INPUT Z$
310 IF ASC(Z$) <> 13 THEN A$(1)=2$
320 PRINT "ENTER NAT INS NUMBER '";: INPUT Z$
330 IF ASC(Z$) <> 13 THEN A$(2)=2$

340 PRINT "ENTER RATE OF PAY ";: INPUT Z$

350 IF ASC(Z$) <> 13 THEN A$(3)=2$

360 PRINT "ENTER TAX CODE ";: INPUT Z$

370 IF ASC(Z$) <> 13 THEN Z$(4)=2%
380 PRINT #DAT$,RECY - '

390 FOR I=1 TO 4:PRINT A$(I):NEXT I
400 CLOSE

Line 280 and 290 makes sure that the new index key is 10

characters 1long and that the data record pointer is the 1last
three characters of the key.

If you do not wish to allow for the update of the index key then
omit lines 260 to 290. It is a good idea to CLOSE the data file
and index file after updating a single record and index key. This
ensures that the contents of the file buffer have been written to
disk and that there will be no loss of new data in the event of a
system crash. The problem with doing this is one of time. Any
disk I/0O slows down the running of any program, and this includes
a CLOSE. If therefore, you are reading through all records in a

file and updating without prompting from the user then the CLOSE
should be left out to keep the updating time to a minimum.

5.4 Deleting a data record.

The data record in a deletion, 1is not physically deleted, all
that is done is that the index key is removed from the index.
This has the effect of removing the pointer from the index so.
that there is no way that a program accessing data via the index

would .give access to the data record. Deletion of the key can be
done in a variety of ways.

1) Bring the key from the end of the index and overwrite the key
to be deleted. The count in record zero of the number of keys in
the index, would have to be reduced by 1.

2) Set t@e key to spaces or a certain character eg ascii 0, so
when reading the index, any index key containing these characters

are treated as deleted and may be used for storing a new record.
The first method requires a sort after deletion and/or adding a
record to put the keys into alphanumeric order. The second method

33

TR —

only requires .a sort after a new record key has been entered.
Taking the Employee data file example as wused before, the
following example will show you how to set a key to 'deleted' by
putting 10 ascii O characters into the key. This was used in the
example in section 5.1 'Storing a record'. |

The first part of the coding is the same as the previous coding
example above. The user will have to enter the employee number of
the record to be deleted. Once this is known, the program can
scan the index for the key entry and display the record and allow
the user to confirm that the record is to be deleted.

10

same as previous example

220

230 PRINT:PRINT "IS THIS THE RECORD TO BE DELETED 'Sl
240 INPUT Z$: IF Z$ <> '"N'" AND Z$ <> ”Y” THEN GOTO 230
250 IF Z$ = "N" THEN GOTO 270

260 Z$=MUL$(CHR$(0),10): PRINT #IND$, IN%: PRINT Z$

270 CLOSE | | 5

5.3 Sorting the index.

L I I I . R B e

When adding a new key onto the end of the index or into a key
flagged as deleted the index soon becomes unsorted. This destroys
the beauty of an index random file. Also, as will be seen in the
next section, a sorted index can be searched at a far greater
speed than an unsorted index. In previous examples the index has
been stored in an internal array. If you refer back to section
3.5 there is an example and disscussion on Binary Chop sorts and
Bubble sorts. Either of the two may be used in sorting the array.

When sorting, 1t may be a good idea to take the opportunity to
tidy up the index. The tidying up involves physically removing

keys flagged as deleted. This can be done when reading the index

off the disk and storing in an array. If the key is flagged as
deleted, do not store the key in the array and go and read the
next key from the index file.

The following example sorts the Employee index and removes any
keys flagged as deleted using the Bubble sort routine. 2

34

10 OPEN "WORKERS.IND",IND$,12

20 INPUT #IND$,0;N: C=0

30 DIM A$(1000)

40 FOR I=1 TO N

50 Z$=INCH$(10)

60 IF Z$=MUL$(CHR$(0),10) THEN GOTO 80
/70 C=C+1: A$(C)=2%

80 NEXT I

90 IF C < 2 THEN GOTO 165
100 C1=C

110 FOR I=1 TO C

120 C1=C1-1

130 FOR I1=1 TO C1
140 IF A$(I1) > A$(I1+1) THEN SWAP A$(I1),A$(I1+1)
150 NEXT I1

160 NEXT I
165 REM

The above coding reads the index into A$(). Any deleted keys are
ignored at line 60, the array is Bubble Sorted. The next step is
to update the index file on the disc with the sorted keys.

170 CREATE "WORKERS.IND'",IND$,12
180 FOR I=1 TO C

190 PRINT #IND$,I:PRINT A$(I)
200 NEXT I

210 PRINT #IND$,0;C

220 CLOSE

The line at 210 updates the key count in record zero. If the

- above coding fails due to a system crash the index will be 1lost

forever. A way around this would be to store the newly sorted
index 1into a file named '"WORKERS.TMP" (temporary file) and wuse
the RENAME verb to change the file name. Using this method will
keep the original index until the sort has been completed so that
a system failure would mean that the user could always backup the
original index in the event of a system crash.

The binary chop sort could be used to possibly speed up the sort.

5.6 Fast searching of an index - Binary chop.

---ﬁ—--__—-__'—---_'_—_—---_—_—_'——‘—---“--—--_-

This routine could be used to find one particular key within a
SORTED index. The theory behind the routine involves halflng the
index. If the key being searched for is less than the key in the
middle of the index then the number of keys in the bottom half of
the index is halved again. If the key being searched for is in
the top quarter then the quarter is halfed and the sequence 1is
performed again. This halving continues until the key being
searched for if found. Using this method reduces the search time
many fold and so reduces the search time accordingly. The coding
is as follows. The variable N contains the number of keys in the
index and the keys are stored in the array A$(). ~

35

e i e e e — —— el .

—p e B, . e

100 PRINT "ENTER KEY TO FIND '";: INPUT A$

110 A1$=A$+MULS$(" ", 7-LEN(A$) |

120 LL=0: LAST = N : UL= LAST : REC=INT(UL-LL)/2

130 B$=LEFT$(A$(REC),7)

140 C=C+1

150 IF A1$=B$ THEN GOTO 1000

160 IF Al$=LEFT$(A$(REC-1),7) THEN REC=REC-1: GOTO 1000

170 IF A1$=LEFT$(A$(REC+1),7) THEN REC=REC+1: GOTO 1000

180 IF LL=REC-1 AND UL=REC+1 THEN PRINT "NOT HERE" - GOTO 1000
190 IF A1$>B$ THEN LL=REC:REC=INT((UL-REC)/2+LL) : GOTO 130
200 IF A1$<B$ THEN UL=REC:REC=INT((REC-LL)/2): GOTO 130

1000 PRINT "KEY FOUND IN THE ";REC;"TH ELEMENT OF THE INDEX"

36

Chapter 6. Data compaction.

-—--‘_--__—-—--—-—-—_—--—-———-——_-—--—_---—-—-—_ﬁ---_-*----—-

per field are used as delimiters (end of field) by the INPUT
statement when reading a field from a disk.

The wuser can use the IOM(6,0) statement (page 119 Basic Manual)
to output a C/R only when PRINTing data to a file. Use the
statement in the following manner : = -

100 IOM(6,0): PRINT #FD$,1
110 FOR I=1 TO 4

120 PRINT A$(I)

130 NEXT I

140 IOM 6,1: CLOSE

In the above example assume the file is OPEN. The FOR/NEXT 1loop
PRINTs 4 fields to a file record. Using the IOM statement the
overall length of the record has been reduced by 4 bytes.
Removing the L/F character does not affect the INPUT statement as
the INPUT statement is Just as happy to delimit on a C/R only.
Set bit 6 back to auto line feed character straight after

PRINTing to the file, so that other PRINTing statements in your
program are not affected.

--__—__-_----------_-—--_ﬁ-—--—-——--l—-—_

Using semi-colons between each field will mean that no C/R or L/F
will be PRINTed. The effect of the PRINT sCatement with semi-
colons is similar to the PRINT statement on the screen with semi-
colons. If you have 4 fields within a record, and each fields is
10 bytes long then using the IOM statement mentioned above the
record length will be 44 bytes. By putting semi-colons between
each field the total length of the record will be 10+10+10+10+1.
The one byte at the end is the C/R resulting from the PRINT
statement with IOM(6,0) set. Put into coding as follows :

100 PRINT #FD$,1: IOM(6,0)

110 PRINT A$(1);A$(2);A$(3):A$(4)
120 CLOSE: IOM(6,1)

set length decided upon at data file creation stage. The reason
1s Dbecause when the INPUT statement is used it delimits on the
C/R, so all the four fields will be dumped into the INPUT
variable in one go. The individual fields can be broken down into
their own wvariables using LEFT$,RIGHT$ and MIDS. Using these
three statements requires the user knowing where the start and

37

end of each field is. Coding to extract the above record from the
disk and break in down to fields may be as follows:

100 INPUT #FD$,1

110 INPUT Z$

120 FOR I=0 TO 3

130 A$(I)=MID$(Z$,I*10+1,10)
140 NEXT I f

y

Always make sure that the FOR/NEXT loop is set up for the correct

number of fields and that the array A$() has been dimensioned
accordingly. "

There is a limit to the amount of characters that can be PRINTed
to a data file 1in one PRINT statement. The 1limit 1is 128
characters. If the record is for example, 150 characters 1long
excluding any C/R's or L/F's then the printing of the record will
have to be broken down into 2 PRINT statements as follows. Assume
that the record contains 5 fields, each field 30 bytes long, and

held in the array A$().

100 PRINT #FD$,1: IOM(6,0)
110 PRINT A$(1);A$(2);A$(3): PRINT A$(4);A$(5)
120 CLOSE: IOM(6,1)

The first PRINT statement will put a C/R at the end of the first
three fields and the second PRINT will put a C/R at the end of
the third and fourth field. Therefore with C/R's the record will
contain 152 bytes. Not using IOM(6,0) would mean 154 bytes being
required per record. Without the semi-colons and IOM(6,0) the

record length would be 160 bytes.

Reading the 5 fields from the disk could be done using two INPUT
statements and the splitting each field up using MID$, LEFT$ and
RIGHT$. Again, the 1length of each field should be decided and
kept to, when writing the record to the disc.

6.3 Storing numeric data.

---—‘--—-ﬂ--——ﬂ_-——_--—_—“

When storing a number, say 232323.33, storing as a string would
involve 9 bytes being taken up. Storing the number 122 would_tage
up 3 bytes. Storing numbers as strings, whilst acceptable, it 1s
somewhat wastefull of disk space. A disk saving method 1is to
break numbers down into ascii codes using a simple formula.
Described below are three numeric¢ ranges in which numbers may be
stored. The ranges may be extended by the wuser however, Dy
expanding the coding. The ranges covered in this manual are:

1) 0 to 255 (stored as 1 byte)

2) 0 to 65025 (stored as 2 bytes)

3) 0 to 16581375 (stored as 3 bytes)

38

With' all thrge ranges there are two steps in using them. Before
storing on disk, the numeric data needs to be 'converted' from

its numeric value to its ascii value. When reading from the disk

the ascii value needs to be 'reconverted' Co 1ts numeric value
before any computation may be performed.

Ngmbers Iln Cthe range 0 to 255 may be stored in 1 byte on the
disk. The number is converted for storage using the CHR$()
statement. (see page 47 of the Basic manual). Therefore the
number 1is stored as an ascii character, not as the ' number
entered. Storing the number 125 would be coded as follows

100 PRINT #FD$,1: PRINT CHR$(125)

The coding stores the number in the file OPEN on FD$ in record
number 1.

‘To read the number back from the file and coﬁvert back ¢to 'a

numeric value is coded as follows

110 INPUT #FD$,1: INPUT N$: N%=ASCII(N$)

The ASCII statement can be found on pége 36 of the Basic manual.
There is an important note at the end of this section to allow

for the program not being confused by CHR
(End of file). 8 DY $(9) (TAB) and CHR$(25)

Numbers in the range 0 to 65025 can be stored in two bytes on the
disk. The conversion from numeric to a two byte ASCII string
involves the number being divided by 255. The number by which the
value can be divided by 255 is stored in the first byte and the

remainder stored in the second byte. The coding, as a GOSUBed
routine is as follows

1000 REM *%%%%% N is the number to be stored *¥%%x¥%
1010 A1$=CHR$(INT(N/255)) | Xy 4

1020 A2$=CHR$(N-INT(ASCII(A1$)*255)

1030 Z$=A1$+A2$: - T

1040 RETURN

Z$ contains the 2 byte String~that represents the number N. The
Varlable Z$ may be PRINTed to the data file.

When reading the 2 byte string from the file the string needs to
be convgrted back to a numeric item. N, below, is the coding for
the string to numeric conversion.

2000 REM **%*%**CONVERTS A TWO BYTE STRING TO A NUMBER %% %%
2010 REM *¥%%¥*%7Z$ IS THE INCOMING 2 BYTE STRING *¥%dk ks

2020 A1$=LEFT$(Z$,1): A2$=RIGHT$(Z$,1) ' '

2030 N=ASCII(A1$)*255+ASCII(A2$)

2040 RETURN - R

39

| There is an important note at the end of this section to allow
} for the program not being confused by CHR$(9) (TAB) and CHR$(25) oyte nuaber strings:

(End of file). | To store 2 decimal places multiply the number by 100 before

g = . ‘ “ , - convertin to i vi

Storing a number in the range 0 to 16581375 in a three byte canverting i : sgg;iggéo :ngug;V1de ;E? number by 100 after
. string works on the same principle as with the two byte string. of nusbers that nav:h w) s will reduce the range
| "The following two routines convert from a number Co a three byte ay De stored by a factor of 100.

} Stflﬁg and V?Ca Versa. .' N | Adding a small amount of extra coding to the above routines, the
| 3000 REM **** CONVERTS NUMBER N INTO A THREE BYTE ki 3::5 tmaytcreate four, five and more byte strings which may Dbe
| 3010 REM **%% STRING Z$ _ | - ng grﬁ numbers. Which ever length string is used, ensure
h 3020 A1$=CHR$(INT(N/65025)): N=N-(ASCII(A1$)*65025) two Dbyte cgnseigzings arf ERTLTREL RN T & numerin Gking e
| 3030 A2$=CHR$(INT(N/255)): N=N-(ASCII(A2$)*255) good 1idea to " on routine, not the one byte etc. It may be a

3040 A3$=CHR$(N): Z$=A1$+A2$+A3% user put range checks in the coding, with appropriate

3050 RETURN . _ _ error messages to stop the possibility of the user trying to

store the number 300 in one byte and so on.

If you were to store the number 12345678 in a three byte string,
the ASCII value of each byte will be 189, 219, 108. This can be

checked by the calculation :

189 X 65025 = 12289725+
219 X 255 = 55845+
108 108+

~17345678-

4000 REM **** CONVERTS A THREE BYTE STRING Z$ TOQ *¥¥kdekdox
4010 REM *¥*** A NUMBER N ke kKK
4020 A1$=LEFT$(Z$,1): A2$=MID$(Z$,2,1): A3$=RIGHT$(Z$,3)
4030 N=ASCII(A1$)*65025

4040 N=N+ASCII(A2%)%*255

4050 N=N+ASCII(A3%)

4060 RETURN

As mentioned before, when handling ASCII values 9 (TAB) and 25
(End of file) Basic treats them as described in the brackets.
This can be overidden using the IOM statements IOM(3,0) and
IOM(7,0). The first IOM causes all ‘'end of file' markers to Dbe
ignored. The second IOM stops Che expansion of the TAB character

to spaces. See pages 118 and 120 of the Basic manual). Use these
two statements before PRINTing and INPUTing to/from the disk.
Reset them after, if required. Note that IOM(3,0) inhibits the
use of SHIFT-BREAK which is very useful wnen testing/debugging
programs'! |

If you require negative numbers, as well as positive numbers, CtoO
be ~stored then add a leading or trailing byte onto the string
with the sign stored. Alternatively, half the maximum number CO
be stored, ie 65025 in a two byte string, and allow the user CO
store any number in the range -32512 and +32512. Using this
method requires the value 32512 to be added to the number when
converted from a number to a two byte string. After converting
from a three byte string to a number subtract 32512 to give the
original number stored. This principle can be used on 1 and three

40

P e
e ik DTS —a—— e vkl WSS mamam s awlien R i nhi
ki NSy mn e Gl e e WS e — s S m— e AHEES W o s el SRGL D s e Ry Sm—— — A —
___"_*_“.-—-—ﬂ——-lﬂm__-__—"ﬂ__-'l_'.“H_——H——__-*—_"_-_.H-.I
PR — i N Temas e WSS wmees sl Gl S— —
— ek (AN T— — T —

There are several ways in which the Random Index files discussed
in chapter. 5 can be improved upon. Disk access slows down the
overall speed at which a program operates. - The more disk access,
the slower the program operation. When the computer reads the
disk it pulls in a chunk of characters 1in the memory. If you are
reéding the index keys in, then the more compact'the~ data LCLhe
less number of reads to pull all the index keys into an array.
Keeping the index in an array brings us to another problem. The
size of the array is inflexable and depends on the DIM statement.
Also, if the array contains 2000 keys and. pointers, and a large
amount of random access is required, Cthen scannlng'through the
index array for each key can amount to a noticable time delay.

A third problem is keeping the array in a sorted order. SlotCing
a new key into the index invloves finding where to put the new
key, then shuffling all the keys below down by one array e}ementi
Or, altenatively, the index can be sorted per10d1c§l¥y. This last
nethod involves a period where the user is kept walting for some
time according to the number of keys Co sort.

All the above problems can be overcome using more advanced file
structure techniques. This chapter 1is written to describe a
possible index struclture, but without programming examples. The
system 1s quite complicated and any coding 1in this manua} @ould
not help in grasping the overall understanding of the principles

involved.

—_-.—n-_-———__-—-——*_—“*—-
-—_-——-—ﬂ-—-__—-—-1-_-——_-——_*-_#——-—-_—-—
- RO DD P
-——*—_“—_-

The index to the file will usually be structured over CLwoO levels,
the 'low level' and the 'high level' index.

The low level index will contain the key and pointer CO the file
for each data record on the file. The low %evelulndex 'wlll .be
subdivided into smaller 'units'. The enteriles will bg in strict
sequence within the low level index. Followling reorganisation Che
low level index 'units' will only contain a percentage of the
maximum entries possible, to allow for insertions.

The high level index will contain the lowest key in each wunit of
the low level index. This will allow the program to quickly
search through the high level index and decide which of the low

level units to search for the index key and pointer.

' d as a header
A 'header record' (previously record O has been use | |
record with the ‘'number of records on file count') will Dbe

required to hold the following information

42

1) Pointer to the first free record
2) Number of actual records on file
3) Maximum number of records on file
4) Number of bytes per record

5) Key length |

6) Index unit density.

The above numeric items stored as a two byte string (see section
6.3) will allow a maximum of 65025 records to be held.

An example of an index design using this method of access on a
file of 1000 data records, each record of 128 byte with a key of
eight bytes and an index density of 80% follows.

Each unit of the low level index will be 128 bytes.

- The header record and index units will be held at the beginning

of the data file. They could be stored in a seperate file if
required. |

Header record. Record number 0.

Description of field. length. type.
Pointer to the first free record 2 numeric string
Number of record on the file 2 " =
Maximum number of records on file 2 2. 0
Number of bytes in data record 2 - !
Key length 2 .)
Index density 2 = &
High level index record. 6 records - Records numbers 1 to 6.
Description of the field. length. type.
Lowest key in low level index unit 1 8 string
Lowest key in low level index unit 2 ol =

Lowest key in low level etc etc

Lowest key in low level index unit 15 8 =

The record layout for the other 5 high level indexes is as above.
The second high level index record will contain the lowest keys

for low level index units 16 to 30. There will be 84 low 1level
units. |

Low level index. Repeated 84 times. Record numbers 7 to 90.

A RS R R e S S W e S S S T S S S S S S S T Ty W S T S e A T T S T S T e e e e W . T A R e S T S

Description length type
Key to data record 8 string
Logical pointer to data record 2 numeric string

The above key and pointer is repeated up to 12 times according to
the number of data records on file.

43

Keys within a low level index block are kept in strict ascending
sequence.

Data records. 1000 records max. Record numbers 91 to 1090.

“--—-—_——ﬂ_-—--_----__—-—-—-——--—--———*—--————-_-——ﬂ—_————_--———
A

Description length type
Dataeeeee. 128 7

If the data record is not in use (free) the format of the record
e - a4l S |

Pointer to the next free record 2 numeric string
Spare | | -, LdB. s o

Accessing a record - assuming index structure as per example.

e S N N O
‘———_--———--—‘-—ﬂ-ﬂ—_'ﬂn_-——_l-—_——“———ﬁ—-———_——-——ﬂ-—_——
A —

The key required will be compared to the keys in the first high
level index and the second high level index wuntil the entry
higher than the key required is found. The low level index block
indicated by the previous entry will then be searched. If the key
is found the associated pointer can be used to access the data
record. If the key is not found a 'record not on file' error
should be passed to the user.

Inserting a new record into the file.

The key of the new record will be used in a search of the index,
as if accessing the record. If the key is found a 'record glready
on file' error will be passed to the user. If the key 1s not
found the header record will be accessed to update the number
of records on file and to obtain the pointer to the first free
record, this will be replaced by the pointer to the NEXT free
record held in the first free record. The new data will be
inserted to the file in the free record previously pointed Cto.
The key and pointer to the new data record will be entereq into
the 1low level index unit in the appropriate position. Prior O
any actual insertion the number of records on_the-f%le will Dbe
compared to the maximum number of records and warning messages
should be passed to the user if nearly full. . A message, warning
the user that a low level unit has reached its INDEX DENSITY (in
Header Record) should be passed before reorganisation. A record
cannot be inserted if it's index unit 1s full.

Deleting a record from the file.

The key of the record to be deleted will be used in a search of
the index, as if accesssing the record. If the key 1is not found
a 'record not on file' is passed to the user. If the key 1s found
then verification can be obtained from the user by displaying the

44

data record. The data record will be zeroised (filled with ASCII
O's) and the first two bytes set to point to the next free record
(the previous pointer to the first free record held in the header
block). The key and pointer to the deleted record will be removed
from the low level index unit and the index block re-ordered. If
the key was the lowest or the only key in the low 1level index
unit the appropriate entry in the high level index will need ¢to
be altered/removed and the high level . unit reordered if
necessary. The number of records held in the header record will
be reduced by 1 and the pointer to the first free record re-set
to point to the address previously occupied by the deleted record.

Reorganising the index.

e T T . W . S S s S W A S s e T S e -

Reorganisation space equal to the size of the low 1level index
will be <created. The average number of the entries per index
record will be calculated by dividing the number of records on
file by the number of low level index blocks. The index entries
will be transfered to the original file. The high 1level index

will Dbe re-created from the lowest entries in each unit of the
low level index.

Maintenance programs.

One or more maintenance programs will be required to
create, maintain and reorganise random index files designed 1in

‘the above way. There will be required, .ASC files containing add,

search and delete routines that can be appended to Basic programs
when required. A third level index may be held in the header
record to reduce to access time when searching through the high
level indexes. This third level index would work under the Cthe
same principle as the high level index is to the low level index.
The 'create' maintainance program, as well as setting wup the
header record and initialise pointers, will have to <calculate

the number of indexes required for the maximum number of data
records.

The above Random Indexed file description is meant to give an
outline for more serious data processing programmers. Whilst its
use on 3" disk may not be worth while, serious consideration must

be given ¢to this file structure where large amounts of records
are being randomly accessed on a hard disk.

45

ﬂ_-““_—-——ﬂ__*“_-_*_
———a—._—_n.——-ﬂ-——-ﬂ—-l-——iﬂ-—-——-

It is hoped that this manual has given Yyou a broader
understanding of using data files with Xtal Basic. Please note
however, with the Xtal Basic specific comments removed, this

manual will assist any programmer writing Basic programs for data
files.

For those persons put off from writing file handling in Basic,
there are programming languages available that maintain the

indexes automatically. I have had experience of CIS Cobol which
operates under C/PM and is available for the Einstein.

This manual was not written as being the B'all and end'all of
Data File handling manuals, merely as a stepping stone for those
persons with Basic programming experience but a bit lacking 1n
data file structures.

REQUEST FOR AN APPLICATION FORM TO JOIN THE
"UK Einstein User Group"

Name
Address

Postcode

Please post to :
Graham Bettany, 80 Dales Road, Ipswich, Suffolk, IP1 4JR.

Tel (0473) 4590/

***********‘*.*******'J't'****_******"k‘f("k****:**************‘f#‘f{******‘k****‘k

46

NOTES

