
17/06/2021 Added Real Time Clock | Details | Hackaday.io

https://hackaday.io/project/167711-3-chip-z80-design/log/170304-added-real-time-clock 1/5

Added support for the Real Time Clock (RTC). The Z80_PSOC board has a spot for an
optional 32.768 KHz watch crystal which provides accurate time.

The PSoC has internal circuitry for a clock. The board also has a battery holder so that the
RTC is maintained when the main power is removed from the board.

RTC Access from the Z80

I added access from the Z80 to the Real Time Clock functions. The RTC addresses can be
located at any 2 locations in the I/O Space. I put these addresses into the file
HardwareConfig.h as:

#define RTC_DATA 0x60 // 96 dec

#define RTC_CSR 0x61 // 97 dec

The first location, RTC_DATA is the RTC Data location. The other location, RTC_CSR is the
control/status register for the RTC.

The code for the clock is in Z80_RTC.c and .h files. The files implement a simple state
machine to set and track the state of the clock interface. The states are in an enumeration as:

enum rtcStates

{

 RTC_SEC, // 0

 RTC_MIN, // 1

 RTC_HR, // 2

 RTC_DAY, // 3

 RTC_MON, // 4

 RTC_YR_HI, // 5

 RTC_YR_LO // 6

};

Added Real Time Clock
A project log for 3-Chip Z80 Design

Combining a Z80 retro design with a modern
PSoC CPU.

land-boards.com
 •
10/26/2019 at 11:27 • 0 Comments

https://hackaday.io/project/167711
https://hackaday.io/hacker/18197-land-boardscom
https://hackaday.io/

17/06/2021 Added Real Time Clock | Details | Hackaday.io

https://hackaday.io/project/167711-3-chip-z80-design/log/170304-added-real-time-clock 2/5

The initialization code sets the first access to the seconds and turns on the clock. After
reading the RTC_DATA from the code, the second access will automatically be set to the
minutes. This continues on through the seven values. After the last location is read/written the
state machine will go back to seconds.

Writing to the RTC_CSR location sets the offset to any of the fields. Values need to be limited
to 0-6 matching the field offset. Reading the RTC_CSR location returns the the current state
pointer.

Setting the RTC from BASIC

Setting the RTC code looks like this:

5 REM SET THE CLOCK POINTER TO SECONDS

10 OUT 97,0

20 REM SEC

30 OUT 96,1

40 REM MIN

50 OUT 96,35

60 REM HOUR

70 OUT 96,8

80 REM DAY

90 OUT 96,25

100 REM MON

110 OUT 96,10

120 REM YR_LO

130 OUT 96,227
140 REM YR_HI

150 OUT 96,7

BASIC uses integer math so the values are simple integers. The only complicated part is
setting the year since it's a 16-bit value and has to be set in 2 parts. Setting the upper byte of
the year to 7 sets the clock to 7*256=1792. Adding 227+1792 sets the year to 2019.

Reading the RTC from BASIC

The code to read the RTC is similar:

400 OUT 97,0

410 SC = INP(96)

420 MN = INP(96)

430 HR = INP(96)

440 DY = INP(96)

450 MO = INP(96)

460 YL = INP(96)

470 YH = INP(96)

480 PRINT "YR";((YH*256)+YL);"MON";MO;"DAY";DY;"TIME";HR;MN;SC

17/06/2021 Added Real Time Clock | Details | Hackaday.io

https://hackaday.io/project/167711-3-chip-z80-design/log/170304-added-real-time-clock 3/5

 When RUN 400 is entered and looping, the clock returns:

YR 2019 MON 10 DAY 27 TIME 20 16 17

YR 2019 MON 10 DAY 27 TIME 20 16 17

YR 2019 MON 10 DAY 27 TIME 20 16 17

YR 2019 MON 10 DAY 27 TIME 20 16 18

The hours is a 24 hour (Military style) clock. Subtracting 12 from numbers over 12 and adding
an AM/PM indication could be done.

PSoC Code Implemetation

As mentioned there is a driver Z80_RTC.c and .h that maps the Z80 accesses to the RTC
code generated from the PSoC API generator. Setting the value works like this:

///

// void writeRTC(uint8) - Write to RTC

// Auto-increment to the next field

void writeRTC(void)

{

 uint16 year;

 uint16 year2;

 uint8 wrVal = Z80_Data_Out_Read();

 switch (rtcState)

 {

 case RTC_SEC:

 RTC_WriteSecond(wrVal);
 rtcState = RTC_MIN;

 break;

 case RTC_MIN:

 RTC_WriteMinute(wrVal);
 rtcState = RTC_HR;

 break;

 case RTC_HR:

 RTC_WriteHour(wrVal);

 rtcState = RTC_DAY;

 break;

 case RTC_DAY:

 RTC_WriteDayOfMonth(wrVal);

 rtcState = RTC_MON;

 break;

 case RTC_MON:

 RTC_WriteMonth(wrVal);

 rtcState = RTC_YR_LO;

 break;

 case RTC_YR_LO:

 year = wrVal;

 RTC_WriteYear(year);

 rtcState = RTC_YR_HI;

 break;

 case RTC_YR_HI:

 year = RTC_ReadYear() + (wrVal<<8);

17/06/2021 Added Real Time Clock | Details | Hackaday.io

https://hackaday.io/project/167711-3-chip-z80-design/log/170304-added-real-time-clock 4/5

 RTC_WriteYear(year);

 rtcState = RTC_SEC;

 break;

 }

 ackIO();

}

Reading the RTC is driven by the same state bits and the code looks like this:

///

// uint8 readRTC() - Read RTC

// Auto-increment to the next field

void readRTC(void)

{

 uint8 retVal = 0;

 switch (rtcState)

 {

 case RTC_SEC:

 retVal = RTC_ReadSecond();

 rtcState = RTC_MIN;

 break;

 case RTC_MIN:

 retVal = RTC_ReadMinute();

 rtcState = RTC_HR;

 break;

 case RTC_HR:

 retVal = RTC_ReadHour();

 rtcState = RTC_DAY;

 break;

 case RTC_DAY:

 retVal = RTC_ReadDayOfMonth();

 rtcState = RTC_MON;

 break;

 case RTC_MON:

 retVal = RTC_ReadMonth();

 rtcState = RTC_YR_LO;

 break;

 case RTC_YR_LO:

 retVal = (uint8)(RTC_ReadYear() & 0xff);

 rtcState = RTC_YR_HI;

 break;

 case RTC_YR_HI:

 retVal = (uint8)(RTC_ReadYear() >> 8);

 rtcState = RTC_SEC;

 break;

 }

 Z80_Data_In_Write(retVal);

 ackIO();

}

 The source code is in GitHub.

https://github.com/douggilliland/Retro-Computers/tree/master/Z80/PSOC/PSOC_Design_Files/Z80-PSoC-3-Chips_002/Z80_3Chip.cydsn

17/06/2021 Added Real Time Clock | Details | Hackaday.io

https://hackaday.io/project/167711-3-chip-z80-design/log/170304-added-real-time-clock 5/5

Going up?

About Us
 Contact Hackaday.io
 Give Feedback Terms of Use
 Privacy Policy
 Hackaday API

© 2021 Hackaday

Previous Log

Z80 (CP/M) Writing to SD Card
10/25/2019 at 11:06 •
0 comments

Next Log

More SD Card Write Details
10/26/2019 at 14:10 •
0 comments

DISCUSSIONS

Log In or become a member to leave your comment

Log In/Sign up to commentLog In/Sign up to comment

https://hackaday.com/about/
mailto:projects-contact@hackaday.com
https://hackaday.io/project/37
https://hackaday.io/tos
https://supplyframe.com/company/privacy
https://dev.hackaday.io/
https://hackaday.io/
https://hackaday.io/project/167711/log/170284
https://hackaday.io/project/167711/log/170284#discussion-list
https://hackaday.io/project/167711/log/170306
https://hackaday.io/project/167711/log/170306#discussion-list

